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Abstract

The inverse linear optimization considers the problem of inferring the objective coefficient vector of
a linear program through the observation(s) of the constraints and the optimal solution. We consider
a stochastic setting where the objective coefficient vector follows some unknown distribution and the
goal becomes to estimate the distribution from observations of constraints and the optimal solution.
The existing approaches of inverse linear optimization all rely on the existence of one objective
coefficient vector that is consistent with all the observations and thus will fail in a stochastic setting
where each observation may correspond to a different objective vector. We consider two settings
for stochastic inverse optimization: a Gaussian setting where the objective coefficient follows von
Mises-Fisher distribution, and a δ-corruption setting where the objective coefficient distribution
concentrates on one vector with high probability and it is arbitrarily corrupted otherwise. We
devise algorithms to estimate the underlying distribution under both settings and develop theoretical
guarantees accordingly. We illustrate the algorithm performance through numerical experiments.

1 Introduction

The problem of inverse linear programming considers the problem of inferring the objective coefficient
vector of a linear program through the observation(s) of one single or multiple pairs of the constraints
and the optimal solution. Early works (Zhang and Liu, 1996; Ahuja and Orlin, 2001) study the case
of one single observation and aim to find one objective coefficient vector that (i) is consistent with the
observation and (ii) minimizes the distance to a pre-specified vector. Different variants of the problem are
later studied: the inverse convex programming (Keshavarz et al., 2011), the inverse optimal value problem
(Ahmed and Guan, 2005), the multiple-objective setting (Chan et al., 2014), etc. While the forward
optimization problem solves for the optimal solution with the knowledge of the objective function, the
inverse optimization problem seeks to recover the unknown objective function through the observations
of the optimal solution. The inverse optimization problem finds its application under a wider range of
contexts: geoscience (Burton and Toint, 1992), finance (Bertsimas et al., 2012), energy (Aswani et al.,
2018), health (Chan et al., 2014), market analysis (Birge et al., 2017) etc.

In this paper, we study the problem under a stochastic setting where the unobserved coefficient vector
of the LP is sampled from some unknown distribution. The goal is to estimate the distribution through
observations of the constraints and the optimal solutions. Such a stochastic setting can be motivated from
many application contexts. For example, one stream of literature (Beigman and Vohra, 2006; Aswani
et al., 2018) employs the inverse optimization models to study customer behaviour where the objective
function encodes the customer latent preference and the observations of the optimal solution correspond
to the customer’s purchasing behaviour. In such a context, the customers may have different preferences,
and thus the stochastic utility (objective coefficient vector) captures the heterogeneity of the customer
preference. Accordingly, the goal becomes to uncover the distribution of customer preferences rather
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than to identify one shared preference for all the customers. To the best of our knowledge, our paper
provides the first result in the literature of inverse optimization that allows the unobserved objective
function to be stochastically distributed.

We consider two settings for stochastic inverse optimization: a Gaussian setting and a δ-corruption
setting. For the Gaussian setting, we assume the objective coefficient vector follows the von Mises–Fisher
distribution, i.e., the restriction of a multivariate Gaussian distribution to the unit sphere. The setting
can be viewed as the most straightforward generalization of the deterministic setting. For the δ-corruption
setting, we assume the objective coefficient vector concentrates on an unknown vector with probability
1− δ and follows an arbitrarily corrupted distribution with probability δ. The setting can be viewed as
a robust version of the traditional inverse optimization where the observations are subject to adversarial
corruption or contaminated with outliers. For both settings, a key distinction from the traditional setting
is that there does not exist an objective coefficient vector that is consistent with all the observations.
The existing approaches more or less rely on this consistency for algorithm design and analysis and thus
will fail for the stochastic setting.

1.1 Related Literature

Traditional inverse optimization.
Burton and Toint (1992, 1994) first study the inverse optimization problem for the shortest path

problem. The formulation is then generalized and studied in (Zhang and Liu, 1996; Ahuja and Orlin,
2001) as inverse linear optimization with one single observation. Keshavarz et al. (2011) investigate the
inference of a more general convex objective function, and a line of works consider the multi-objective
setting (Chan et al., 2014; Dong and Zeng, 2020b). The inverse optimal value problem (Ahmed and
Guan, 2005) considers a setting where the optimal objective value instead of the optimal solution is
observed. Optimization-based approaches are usually adopted for this line of works with the aim to
translate the inverse problem as a convex or linear programming problem. Recently, Keshavarz et al.
(2011) and Aswani et al. (2018) study a statistical setting where the observations are noisily sampled from
some distribution. Specifically, Aswani et al. (2018) consider a setting where the optimal solutions are
contaminated with some independent noises (justified as bounded rationality (Tversky and Kahneman,
1985)). We remark that all these existing works consider a deterministic regime where the objective
function is parameterized by some unknown but fixed parameters (e.g., objective coefficients for linear
programs), and the goal is to estimate the parameters through observations. These works aim to develop
efficient procedures to identify a vector of parameters that is consistent with all the observations. In this
light, our stochastic formulation complements the line of work and solves the inverse optimization for
the case when such consistency no longer exists.

Data-driven inverse optimization.
A line of work (Mohajerin Esfahani et al., 2018; Tan et al., 2020; Besbes et al., 2021) studies the

inverse optimization under a data-driven setting. Under the data-driven setting, the goal is still to recover
the objective function, but each observation (of the constraints and the optimal solution) is associated
with a vector of covariates. The covariate vector is also known as context or side information, and
it presumably encodes information about the unobserved objective function. Mohajerin Esfahani et al.
(2018) take a distributionally robust approach and derive generalization bounds on the suboptimality gap
for the estimated parameter. Tan et al. (2020) take a machine learning perspective and draw a connection
with the line of work on contextual linear programs (Elmachtoub and Grigas, 2022). Besbes et al. (2021)
generalize the inverse linear optimization problem and apply a non-linear contextual function on the
decision variables in the objective function. Several recent works (Bärmann et al., 2018; Dong et al.,
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2018a; Dong and Zeng, 2020a; Chen and Kılınç-Karzan, 2020) cast the inverse optimization problem in
an online context and develop (online) gradient-based algorithms. In Section 4.2, we also develop online
algorithms for the δ-corruption setting which can be viewed as a generalization of the algorithms along
this line. As before, this line of literature on data-driven inverse optimization also assumes the existence
of a vector of parameters that is consistent with all the observations, so the settings should be viewed
as deterministic rather than stochastic.

Revealed preference.
A separate line of works focuses on a special case of inverse optimization where there is only one

single constraint. The problem is often referred to as the revealed preference problem and has a long
history in economics (Samuelson, 1948; Afriat, 1967). Recent works (Beigman and Vohra, 2006; Zadi-
moghaddam and Roth, 2012; Balcan et al., 2014; Amin et al., 2015) formulate the problem as a learning
problem that aims to find a utility function which explains a set of past observations and predicts the
future behavior of a utility-maximization agent. Beigman and Vohra (2006) initiate this line of research
and study a statistical setup where the input data is a set of observations and the performance of a
learning algorithm is evaluated by sample complexity bounds. Different from the inverse optimization
literature, the literature of learning from revealed preference also studies the query-based model where
the observations of the constraints and the optimal solution are collected in an active manner. Through
querying an oracle for the optimal decision (solution) of customers, the goal is to minimize the number
of samples required for a sufficiently accurate estimation of the utility function. Zadimoghaddam and
Roth (2012) study the case of a linear or linearly separable concave utility function, and Balcan et al.
(2014) generalize the setting and devises learning algorithms for several classes of utility functions. Some
subsequent works along this line study the associated revenue management problem (Amin et al., 2015)
and a game-theoretic setting (Dong et al., 2018b) where the agents act strategically to hide the true
actions. While the existing works all consider a deterministic preference setting, our paper considers a
stochastic preference setting where the customer’s preference is sampled from an unknown distribution.

Linear programming with side information.
One stream of research studies the linear programming problem with the presence of side information.

The problem is studied under different names such as prescriptive analytics (Bertsimas and Kallus,
2020), smart-predict-then-optimize (Elmachtoub and Grigas, 2022), and end-to-end optimization (Ho-
Nguyen and Kılınç-Karzan, 2022). The formulation and methodology lie in the intersection of operations
research and machine learning. The goal is to predict the unseen objective function/optimal solution
of an optimization problem using the available covariates/side information. Different from the inverse
optimization problem, the decision maker is equipped with history observations that contain not only
the covariates and the constraints, but also the objective function.

2 Model Setup

In this section, we formulate the problem of stochastic inverse (linear) optimization, which takes the
following standard-form linear program (LP) as its underlying form

LP(c,A, b) := max
x

c⊤x (1)

s.t. Ax = b, x ≥ 0

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are the inputs of the LP. The decision variables x = (x1, ..., xn)
⊤ ∈

Rn. While the formulation (1) covers all the LPs as special cases, one can interpret the objective as
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maximizing a linear utility function subject to some resource constraints. Throughout the paper, we use
n to denote the number of decision variables and m to denote the number of constraints.

We make the following distributional assumption on the LP’s inputs.

Assumption 1 (Distribution). We assume:

• The objective coefficient vector c follows some unknown distribution Pc.

• The LP’s input (A, b) follows some unknown distribution PA,b independent of Pc.

• The LP’s optimal objective value is finite with probability 1.

The conventional setting of inverse optimization aims to recover the unobserved objective coefficient
vector through the observation(s) of the optimal solution and the constraints. For our stochastic setting,
the objective then becomes to estimate the underlying distribution of Pc using the observations. Formally,
the aim of stochastic inverse optimization is to estimate the distribution through the dataset

DT = {(x∗
t ,At, bt)}Tt=1 . (2)

Here the t-th sample corresponds to an unobserved ct generated from Pc and x∗
t is one optimal solution

of LP(ct,At, bt). We note that there is a scale invariance of the objective coefficient, in that ct and α ·ct
give the same optimal solution x∗

t for any α > 0. Hence these two are indistinguishable based on the
observations of x∗

t ’s. Therefore, we restrict the distribution Pc to the unit sphere Sn−1 = {c : ∥c∥2 = 1}.
In this paper, we study two settings: (i) a Gaussian stochastic setting and (ii) a δ-corruption setting.

For (i), we assume that Pc follows the von Mises–Fisher distribution, i.e., the restriction of a multivariate
Gaussian distribution to the unit sphere. The results developed under this setting can also be generalized
to other spherical distributions, and the Gaussian distribution is chosen for demonstration purpose. For
(ii), we assume Pc concentrates on an unknown vector c∗ with probability 1−δ and follows an arbitrarily
corrupted distribution with probability δ. The setting can be viewed as a robust version of the traditional
inverse optimization where the observations are subject to adversarial corruption or contaminated with
outliers.

The challenge of the problem.
We first discuss the challenge of the stochastic settings in general and thus distinguish our results

from the existing approaches of inverse optimization. Specifically, each observation (x∗
t ,At, bt) in the

dataset DT prescribes a set Ct ⊂ Sn−1,

Ct :=
{
c ∈ Sn−1 : x∗

t is an optimal solution of LP(c,At, bt)
}
.

The set Ct captures all the possible values of ct that is consistent with the t-th observation. The following
proposition states a standard result of linear programming (?) that the set Ct can be derived from the
optimality condition and expressed by a group of linear constraints.

Proposition 1. For each set Ct, there exists a matrix Vt and a vector ut dependent on (x∗
t ,At, bt) such

that
Ct =

{
c ∈ Sn−1 : Vtc ≤ ut

}
.

In the conventional setting of inverse optimization, there exists at least one c∗ that is consistent
with all the observations, and thus the problem reduces to finding one feasible c in the set of ∩Tt=1Ct.
In contrast, for a stochastic setting, it may happen that the set of ∩Tt=1Ct is empty. To the best of
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our knowledge, all the existing approaches of inverse optimization build upon the assumption that the
intersection set is non-empty and thus will fail under this stochastic setting. Figure 1 further illustrates
the intuition of “empty intersection”, and it provides a conceptual visualization of the problem under
a 1-dimensional and 2-dimensional case (n = 1, 2). We remark that the figure is just for illustrative
purpose as the problem may not be well-defined in the 1-dimensional case.

Figure 1: Visualizing the estimation problem in 1-dimensional and 2-dimensional case. For both panels,
the blue solid segments denote the sets Ct’s, and the blue dashed lines represent a value of c that appears
most frequently in these Ct’s. In the conventional setting of inverse optimization, there must exist one
vector c that intersects with all the Ct (blue solid segments), but this may not be the case for the
stochastic setting.

Another perspective is to view the stochastic inverse problem as a statistical estimation problem.
The goal is to estimate the distribution of Pc (for example, von Mises-Fisher distribution) without the
observations of the realized samples ct’s, but merely with the knowledge of Ct to which ct belongs. At
the first place, the estimation problem is more challenging than the canonical setting where the realized
samples are fully observed. Also, the sample efficiency of the estimation procedure is naturally contingent
on the dispersion of Ct which is essentially determined by the generation of (At, bt). For example, if all
the Ct’s coincide with each other, then one can hardly learn much about the underlying Pc. In this
paper, we aim to pinpoint conditions on PA,b under which the estimation of Pc is possible. Furthermore,
an alternative way to measure the estimation accuracy is to evaluate the predictive performance of the
estimated model on new observations generated from PA,b, and such performance bounds generally bear
less dependency on the distribution of PA,b. We also provide theoretical guarantees in this sense.

3 Inverse Optimization with Gaussian Distributed Objective

In this section, we study a setting where the distribution Pc follows the von Mises-Fisher distribution.
Specifically, the distribution is parameterized by θ = (µ, κ) with the density function

f(c;θ) :=
exp

(
κµ⊤c

)∫
c′∈Sn−1 exp(κµ⊤c′)dc′

∝ exp
(
κµ⊤c

)
.

Here the vector µ ∈ Rn represents the mean direction and the parameter κ > 0 controls the concentration
of the distribution. The conventional setting of the inverse optimization problem can be viewed as the
case when κ = ∞, and then the objective coefficient vector becomes deterministic and is equal to µ

with probability one. Denote the true parameters of the distribution Pc by θ∗ = (µ∗, κ∗). The goal is to
estimate the true parameters using the dataset DT .
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The likelihood of the dataset DT under parameter θ is given by

l(DT |θ) :=
T∏
t=1

l ((x∗
t ,At, bt)|θ)

=

T∏
t=1

P(ct ∈ Ct|θ) =
T∏
t=1

∫
c∈Ct

f(c;θ)dc.

Recall that the set Ct comes from the LP’s optimality condition in Proposition 1 and it contains all the
objective coefficient vectors that are consistent with the t-th observation in the dataset.

We remark that since the likelihood function is not closed-form in θ, it prevents a direct maximum
likelihood estimation approach. Specifically, this is because the integration of f(c;θ) over the region Ct is
not closed-form, and, in fact, the issue is not only pertaining to the Gaussian parameterization of Pc. The
scale-invariant property of the objective coefficient vector restricts the distribution Pc to a unit sphere (or
a simplex), and consequently, the likelihood function inevitably involves a non-closed-form integration.
The issue can be partially resolved by using the Monte Carlo method to approximate the integration, but
this will prevent the usage of gradient-based algorithms to obtain the maximum likelihood estimation. To
make things even worse, we show in the following that the (negative) likelihood or log-likelihood function
is non-convex and can have local minimum with arbitrarily large gap against the global minimum.

3.1 Non-convexity of Likelihood Function

Proposition 2 gives a negative result on the approach of maximum likelihood estimation (MLE). The idea
of its proof is illustrated by Figure 2 for the case of two samples (T = 2). From the plot, it is easy to see
that the mean direction µ = (1, 0)⊤ gives a large likelihood and is the global maximizer of the likelihood
function. In fact, its opposite direction, as a drastically wrong answer to the estimation problem, is a
local maximizer of the likelihood function. Thus this prevents the application of gradient-based approach
for MLE as it may get stuck at the local optimum.

Proposition 2. For the negative likelihood function −l(DT |θ) as a function of θ, there exists local
minimum whose objective value has an arbitrarily large gap against the global minimum.

Figure 2: A 2-dimensional illustration of the non-convexity of the likelihood function with two samples
(T = 2). The blue and red dashed lines denote the sets C1 and C2. The mean direction µ = (1, 0)⊤ is
the global minimum of the negative likelihood function, while the mean direction µ = (−1, 0)⊤ is a local
minimum.

Arguably, this type of non-convexity phenomenon illustrated in Figure 2 is not rare when the sample
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number T is small. In the next subsection, we provide a positive result that when T is large, although
the likelihood function may still be non-convex, it exhibits a concentration behaviour around the true
parameters θ∗. Together with Proposition 2, it characterizes the landscape of the likelihood function for
the estimation problem.

3.2 Posterior Sampling and Concentration

Now we propose a posterior sampling approach for the problem. The idea is, instead of maximizing
the likelihood function, we directly draw samples from the posterior distribution. In this subsection, we
justify this approach by establishing a concentration property of the posterior distribution.

First, we suppose there is a prior distribution P0(θ) satisfying the following assumption. The only
role of the prior distribution is to ensure that it does not exclude any possible value of the true θ∗.

Assumption 2. We assume that the concentration parameter κ∗ ∈ (κ, κ̄) where κ, κ̄ are two known
positive constants, and we choose the prior distribution P0(θ) as a uniform distribution over Sn−1×(κ, κ̄).

Then the posterior distribution is defined by

PT (θ) :=
P0(θ) · P (DT |θ)

P (DT )

∝ P0(θ) ·
T∏
t=1

∫
c∈Ct

f(c;θ)dc.

With slight abuse of notation, we use PT (·) (or P0(·)) to refer to both the density function and the
probability measure of the posterior (or prior) distribution.

The following theorem justifies the approach of posterior sampling. We first remark that the posterior
sampling approach is just proposed to estimate the parameters, but all the theoretical results are stated
in the frequentist language. The proof of Theorem 1 mimics the idea of the convergence of the posterior
distribution (Ghosal et al., 2000; Chae et al., 2021). The main difficulty of the proof is to adapt the
existing analysis for observable samples to the case of unobservable samples; notably, for our case, we do
not observe ct’s but only know ct ∈ Ct. While similar results also hold for other underlying distribution
of Pc, the von Mises-Fisher distribution provides more analytical convenience in deriving the result.

Theorem 1. Let

ΘT :=

{
θ ∈ Sn−1 × (κ, κ̄) : DTV (P ((x∗

t ,At, bt)|θ) ,P ((x∗
t ,At, bt)|θ∗)) ≤ max (8, 8κ̄)

√
n · log T√

T

}
where DTV (·, ·) is the total variation distance between two distributions supported on Rn × Rn+ × R+

equipped with Euclidean metric. Then, under Assumptions 1-2,

1− PT (ΘT )→ 0 in probability as T →∞.

Specifically, the following inequality holds

E [PT (ΘT )] ≥ 1− 3

T
.

where the expectation is taken with respect to the random distribution PT (·) (essentially, with respect to
the dataset DT ).
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To interpret Theorem 1, we first note that each θ, together with the distribution of PA,b, defines
a distribution over the space of (x∗

t ,At, bt). As we use observations (x∗
t ,At, bt)’s to identify the true

θ∗, the set ΘT defines a set of indistinguishable θ’s based on the total variation distance between
distributions of (x∗

t ,At, bt). The set ΘT shrinks as T → ∞. The posterior sampling approach samples
from the distribution PT (·), and Theorem 1 states that the samples will be concentrated in set ΘT

with high probability. The posterior distribution PT (·) is dependent on the dataset DT , so it is a
random distribution itself, and the results in Theorem 1 are stated in either convergence in probability
or expectation. As a side note, the total variation distance in the theorem is not critical and it can be
replaced with other distances such as the Hellinger distance.

Intuitively, Theorem 1 says that for some θ such that the likelihood distribution P ((x∗
t ,At, bt)|θ)

differs from P ((x∗
t ,At, bt)|θ∗) to a certain extent, the posterior PT (·) is unlikely to generate such θ.

Intuitively, this is the best one can do in that the only observed data are (x∗
t ,At, bt)’s. If some θ

gives a similar likelihood as the true θ∗, then we cannot distinguish θ from the true θ∗ based on the
dataset. In other words, the posterior distribution identifies the true θ∗ up to some “equivalence” in
the likelihood distribution space. The following corollary further exploits this intuition that if there is
an equivalence between the likelihood distribution space and the underlying parameter space, then the
posterior distribution is capable of identifying the true parameter.

Corollary 1. Suppose
DTV (P ((x∗

t ,At, bt)|θ) ,P ((x∗
t ,At, bt)|θ∗)) > 0

for all θ ̸= θ∗ ∈ Sn−1 × [κ, κ̄]. Then the posterior distribution PT (·) will converge to the point-mass
distribution supported on θ∗ almost surely as T →∞. Moreover, suppose there exists a constant M > 0

satisfying
DTV (P ((x∗

t ,At, bt)|θ) ,P ((x∗
t ,At, bt)|θ∗)) ≥M · ∥κµ− κ∗µ∗∥2, (3)

for all θ = (µ, κ) ̸= θ∗ = (µ∗, κ∗) ∈ Sn−1 × [κ, κ̄].
Under Assumptions 1-2, the following inequality holds with probability no less than 1− 1+4M√

T
,

ET [∥κTµT − κ∗µ∗∥2] ≤ max (9, 9κ̄) ·
√
n log T

M
√
T

where θT = (µT , κT ) is sampled from the posterior distribution PT (·).

The corollary states that when there is some equivalence between the likelihood distribution space
and the parameter space as (3), the true parameter is identifiable. The first part of the corollary states
a consistency result that as long as all the θ ̸= θ∗ are distinguishable from θ∗ through the likelihood
function, then the posterior sampling will eventually identify the true θ∗. The second part relates to the
convergence rate with an equivalence parameter M .

In Assumption 1, we assume the constraint input (At, bt) is generated from some distribution PA,b.
We note that Theorem 1 and Corollary 1 hold without any additional assumption on PA,b, but the
space topology of the likelihood distribution is highly dependent on PA,b. Specifically, the distribution of
(At, bt) determines the separateness of the parameter space through affecting the value of M in (3) or
even its existence. Practically, the value M for a specific distribution of PA,b can be estimated through
simulation. So if the decision maker has some flexibility in choosing the distribution of PA,b, the better
choice would be the one that corresponds to a larger value of M. If the constraint input (At, bt) is not
randomly generated but can be actively chosen, the results in Theorem 1 and Corollary 1 still hold by
conditioning on all the (At, bt)’s.

Corollary 2. Let (A, b) be a new sample from PA,b, i.e., independent from the dataset DT , and let
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θT = (µT , κT ) be a sample from the posterior distribution PT (·). Denote x̃∗ and x∗ as the optimal
solutions of LP(µT ,A, b) and LP(µ∗,A, b), respectively. Then, under Assumptions 1-2, the following
inequality holds with probability no less than 1− 5√

T
,

E [∥x̃∗ − x∗∥2] ≤ max (16, 16κ̄)

√
n · log T√

T
,

where the expectation is taken with respect to both the posterior distribution PT (·) and (A, b).

Corollary 2 provides an upper bound on the predictive performance of the posterior distribution.
Specifically, we want to predict the optimal solution of a linear program specified by µ∗ (proportionally
to E[c]) and a new sample of the constraint (A, b), and the prediction x̃∗ is based on a posterior
sample. We know from Theorem 1 that the posterior distribution concentrates on those θ’s that are
indistinguishable from the true θ∗ in terms of the likelihood. Speaking of the predictive performance, we
are only concerned with the distribution of the optimal solution (equivalently, the likelihood), but do not
require the identification of the exact true θ∗, so Corollary 2 does not require the additional condition
(3) to hold. In other words, even if the true θ∗ is not identifiable (for certain distribution of (A, b)),
the posterior sampling approach can still provide some performance guarantee in terms of predicting the
optimal solution.

4 Inverse Optimization with δ-Corrupted Objective

In this section, we consider a second setting where ct, the t-th unobserved objective coefficient vector in
the dataset DT is specified by

ct =

c∗, w.p. 1− δ,

P ′
c, w.p. δ,

(4)

where c∗ ∈ Sn−1 is a fixed vector, and P ′
c is an arbitrary and unknown distribution. The parameter

δ ∈ [0, 1] controls the intensity of corruption which makes the δ-corruption setting an interpolation
between the conventional setting of inverse optimization and the Gaussian setting in the previous section.
Specifically, the conventional setting corresponds to the case of δ = 0, and the Gaussian setting in the
previous section corresponds to the case of δ = 1 and P ′

c being the von-Mises Fisher distribution. While
we allow the corruption distribution P ′

c to be arbitrarily adversarially chosen, we only aim to recover
the parameter c∗ using the dataset DT . To this end, the results developed in this section can also be
seen as a robust version of the existing inverse optimization approaches against adversarial corruption
or statistical outliers.

4.1 Recovery of true objective

A natural approach to estimate c∗ is via solving the following optimization problem:

OPTδ := max
c∈Sn−1

T∑
t=1

ICt
(c)

where the indicator function IE(e) = 1 if e ∈ E and IE(e) = 0 otherwise. The rationale for the optimiza-
tion problem is that for the t-th observation, a vector c is consistent with the observation, i.e., x∗

t is the
optimal solution of LP(c,At, bt), if and only if ICt

(c) = 1. Thus the optimization problem essentially
finds a vector c that is consistent with the maximal number of observations in DT . For a small δ, say
δ < 0.5, the true c∗ will give a large objective value and should ideally stay close to the maximizer. From
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an optimization perspective, the objective function is discontinuous in its argument c, so we propose the
simulated annealing algorithm – Algorithm 4 in the next section to solve for its optimal solution. In this
subsection, we focus on the theoretical properties of the optimization problem.

We first build some connection between the optimization problem OPTδ and that of the conventional
setting with δ = 0. Let x̄∗

t be the optimal solution of LP(c∗,At, bt) and define

C̄t :=
{
c ∈ Sn−1 : x̄∗

t is an optimal solution of LP(c∗,At, bt)
}
.

Then the conventional setting of inverse optimization solves

¯OPTδ := max
c∈Sn−1

T∑
t=1

IC̄t
(c).

By the setup of the problem, c∗ is an optimizer of ¯OPTδ and the optimal objective value is T. The
following proposition establishes that the optimization problem OPTδ can be viewed as a contaminated
version of ¯OPTδ. And the effect that the contamination has on the objective function can be bounded
using δ.

Proposition 3. Under Assumption 1, the following inequality holds

P

(
max

c∈Sn−1

∣∣∣∣∣ 1T
T∑
t=1

ICt
(c)− 1

T

T∑
t=1

IC̄t
(c)

∣∣∣∣∣ ≤ δ + log T√
T

)
≤ 1

T
.

As in the Gaussian setting, it may happen that the generation of (At, bt)’s may prevent an exact
recovery of c∗. In other words, there might exist some vector c′ that is indistinguishable from the true c∗

based on the observations DT , i.e., c′ ∈ Ct if and only if c∗ ∈ Ct for all t. So, we aim to derive a bound
on the predicted performance of an estimator ĉ. Specifically, we define

Acc(ĉ) := E [IC(ĉ)] with C :=
{
c ∈ Sn−1 : x∗ is an optimal solution of LP(cnew,Anew, bnew)

}
where ĉ is our estimator of c∗, (Anew, bnew) is a new sample from the distribution PA,b, cnew is a new
sample following the law of (4), and x∗ is the optimal solution of the corresponding LP. That is, the
quantity captures the probability that ĉ is consistent with a new (unseen) observation. As a benchmark,
we know that for the true parameter satisfies Acc(c∗) ≥ 1− δ.

The challenge for deriving a bound on Acc(ĉ) arises from the discontinuity of the objective function
OPTδ. The existing methods for deriving a statistical generalization bound largely rely on the continuity
and the Lipschitzness of the loss function. Moreover, from Proposition 1, we know that Ct is specified by
(Vt,ut) and the Vt’s are of different dimensions for different t’s. To overcome these challenges, we devise
the following γ-margin objective function. Specifically, we first define a parameterized version of Ct by

Ct(γ) :=
{
c ∈ Sn−1 : Vtc ≤ ut − γe

}
where γ ≥ 0 is a constant and e is an all-one vector. It is obvious that Ct(γ) ⊂ Ct. Accordingly, we define
the γ-margin optimization problem by

OPTδ(γ) := max
c∈Sn−1

T∑
t=1

ICt(γ)(c).

We introduce two groups of assumptions and then derive theoretical results on the optimizer of
OPTδ(γ).
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Assumption 3 (Nondegeneracy). We assume the following:

• (Uniqueness). The optimal solution x∗ = (x∗1, ..., x
∗
n) of LP(c,A, b) is unique almost surely.

• (Primal nondegeneracy). The number of the nonzero entries of x∗ equals the number of constraints
almost surely, i.e.

|B := {i : x∗i > 0, i = 1, ..., n}| = m.

These nonzero entries are also called as basic variables.

• (Non-singularity). Denote AB as the submatrix of A corresponding to the index set B. The matrix
AB satisfies

∥A−1
B ∥2 ≤ σ. (5)

The first two parts of the assumption require that the underlying linear program LP(c,A, b) is
nondegenerate. This is a mild requirement in that any LP can satisfy the assumption with an arbitrarily
small perturbation (Megiddo and Chandrasekaran, 1989). The third part of the assumption concerns
the singularity of the submatrix of A that corresponds to the optimal basis. The intuition for this lower
bound is that σ characterizes the instability of the optimal solution x∗. Specifically, a larger σ indicates a
stronger collinearity between the columns of AB , and consequently, the optimal solution x∗ is less stable
under small perturbation of the LP’s input (including c). Moreover, in the assumption, the inequality
(5) is required to hold in an almost surely sense. We remark that this inequality can be relaxed to hold
in a high probability sense, and accordingly, the remaining results in this subsection will only be affected
by an additional small probability term.

Assumption 4 (L-stability). The following inequality holds for some L,

P
(
IC̄(γ)(c

∗) ̸= IC̄(c
∗)
)
≤ Lγ

where C̄ =
{
c ∈ Sn−1 : x̄∗ is an optimal solution of LP(c∗,A, b)

}
and the probability space refers to the

generation of (A, b) ∼ PA,b.

Assumption 4 requires the γ-margin function’s value evaluate at c∗ does not change much when γ

is small. Specifically, we note that IC̄(c∗) = 1 almost surely, and the assumption states that with a
probability of at least 1− Lγ, the optimality condition in Proposition 1 is satisfied at least by a margin
of γ. In Section XXX, we provide an intuitive interpretation of the assumption for the case of single
constraint, which corresponds to the problem of revealed preference.

Proposition 4. Under Assumption 1 and Assumption 3, the following inequality holds with probability
no less than 1− ϵ,

max
c∈Sn−1

1

T

T∑
t=1

ICt(γ)(c)−Acc(c) ≤ 4

√
(1 +mσ2) log T

γ2T
+ 4

√
log(T/ϵ)

T

for ϵ ∈ (0, 1).

Proposition 4 relates the generalization accuracy of any arbitrary c with the corresponding objective
value of the γ-margin optimization problem. As γ increases, the objective function will decrease, so
the right-hand-side becomes tighter. Importantly, the accuracy on the left-hand-side is defined by the
original indicator function (or equivalently, Ct), while the objective value (the first summation on the
left-hand-side) is defined by the γ-margin indicator function (or equivalently, Ct(γ)). Thus it justifies the
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usage of the γ-margin optimization objective. The implication is that when we optimize the γ-margin
objective, we can still obtain a bound on the original accuracy Acc(c) for a not-so-small γ.

Theorem 2. Under Assumptions 1, 3 and 4, the following inequality holds

P
(
Acc(ĉ) ≥ 1− δ − (9 + 4L1/2(1 +mσ2)1/4) log T

T 1/4

)
≥ 1− 5

T
,

where ĉ is one optimal solution of OPTδ(γ) with γ = 2(1+mσ2)1/4

L1/2T 1/4 .

Theorem 2 states a generalization bound on the accuracy of our estimator ĉ. From Proposition 4, a
larger γ leads to a smaller gap between the accuracy and the γ-margin objective function. Meanwhile, a
smaller γ leads to a smaller gap between the optimal objective value OPTδ(γ) and 1− δ. In the extreme
case of γ = 0, E[OPTδ(0)] = Acc(c∗) ≥ 1 − δ. Theorem 2 optimizes the value of γ to trade off these
two aspects. Assumption 3 covers the first aspect through Proposition 4, while Assumption 4 is the key
to bound the second aspect. At first sight, the choice of γ may require the knowledge of parameters
such as σ and L. We remark that knowledge of these parameters is not critical: one can simply choose
γ = (m/T )1/4 and this will only change the bound slightly in terms of its dependency on σ and L. Finally,
we remark that the design of the γ-margin loss function is inspired from the max-margin classifier, but the
analysis is entirely different. For the max-margin classifier, the introduction of the margin aims to make
the underlying loss function 1-Lipschitz so that a generalization bound using Rademacher complexity
can be derived. But for here, our γ-margin objective function is still a discontinuous one. Compared to
the best achievable accuracy of 1− δ, the accuracy bound in Theorem 2 has a gap on the order of 1

T 1/4 .
While many statistical estimation problems allow a better rate of 1

T 1/2 , we interpret the slower rate here
as a price paid for the discontinuity of the objective function.

4.2 Online Setting and Suboptimality Loss

The methods proposed in the Gaussian setting and in the previous subsection all require some Markov
chain Monte Carlo (MCMC)-type implementation. Computationally, these methods can be very ineffi-
cient when the dimension n is large (see next section for discussions); in that case, the MCMC algorithm
essentially conducts a sampling procedure over a high-dimensional space. In this section, we consider
an online setting with a different objective for the δ-corrupted setting, and the setting facilitates the
development of more efficient algorithms to solve the problem. The results here also draw a connection
with the existing works on the conventional setting of inverse optimization (δ = 0) under the online
setting (Bärmann et al., 2018; Chen and Kılınç-Karzan, 2020). Moreover, the results here do not rely on
Assumption 3 and Assumption 4.

Specifically, we consider the following performance measure instead of Acc(ĉ),

lsub(ĉ) := E
[
ĉ⊤x̂∗ − ĉ⊤x∗]

where ĉ is our estimator of c∗, (Anew, bnew) is a new sample from the distribution PA,b, and cnew is a
new sample following the law of (4). Here x̂∗ and x∗ are the optimal solutions of LP(ĉ,Anew, bnew) and
LP(cnew,Anew, bnew), respectively. The expectation is taken with respect to (Anew, bnew) and cnew. The
performance measure lsub is known as the suboptimality loss in the literature of inverse optimization
(Mohajerin Esfahani et al., 2018; Bärmann et al., 2018; Chen and Kılınç-Karzan, 2020). The rationale is
that when our estimator ĉ stays close to the realized (unobserved) cnew, x̂∗ and x∗ should be the same
to each other, which leads to a zero sub-optimality loss. Intuitively, one can also interpret the loss as a
measure of explainability – how well the estimator explains the observed optimal solution x∗. Also, the
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measure can be viewed as a soft version of the binary-valued Acc(ĉ) in that

IC(ĉ) = 1 ⇒ ĉ⊤x̂∗ − ĉ⊤x∗ = 0.

For the online setting, the observations in the dataset DT arrive sequentially. The decision maker
follows a policy/algorithm π. At each time t, the policy π makes a guess ĉt without using the observations
of future samples (including the observation at time t). The performance of the policy is evaluated by
the regret defined by

RegT (π) =
1

T

T∑
t=1

(
ĉ⊤t x̂

∗
t − ĉ⊤t x

∗
t

)
− min

c∈Rn
lsub(c)

where x∗
t is the observed optimal solution at time t and x̂∗

t is the optimal solution of LP(ĉt,At, bt). We
emphasize that this online setting may not fit all the application contexts of inverse optimization, but it
provides us a generic framework for algorithm design and analysis.

Note that the regret depends on the magnitude of the observation x∗
t by its definition. Even if we

can find a objective coefficient vector close to the true one, the regret may be amplified due to a large
size of the feasible region. Thus, we introduce the following assumption where the probability space is
with respect to the distribution PA,b. The bound is natural and the value of D can be pre-determined
in many application scenarios.

Assumption 5. There exists a constant D such that the following bound holds almost surely

∥x∥2 ≤ D

for any x such that Ax = b,x ≥ 0 where (A, b) ∼ PA,b.

We first remark that the function lsub(·) is a convex function with respect to its argument. To see
this, the function can be rewritten as

lsub(c) = E
[

max
x≥0:Ax=b

c⊤x− c⊤x∗
]

(6)

where the first term takes maximum over a set of linear functions and the second term is a linear function.
This provides a foundation for the algorithm design in (Bärmann et al., 2018; Chen and Kılınç-Karzan,
2020). The results here can be viewed as an extension of theirs from a corruption-free setting of δ = 0

to a δ-corrupted setting with δ > 0.
As in the previous section, we first provide a benchmark as follows. It concerns the sub-optimality

loss using the true c∗. Its proof is straightforward and it is based on the generation mechanism of the
objective coefficient vector (4). The right-hand-side of the bound reflects the inconsistency caused by
the corruption, and it captures the proportion of the generated data samples that cannot be explained
using the true c∗.

Proposition 5. Under Assumption 1 and Assumption 5, suppose that the feasible region of the LP (1)
is bounded by D. The following inequality holds.

lsub(c
∗) ≤ 2Dδ.

With the benchmark in mind, we proceed to analyze two algorithms for the online setting. Both
algorithms are inspired from standard algorithms for the problem of online convex optimization.

Our first algorithm – Algorithm 1 is described as follows. At each time t, the algorithm utilizes the
past observations {(x∗

s,As, bs)}t−1
s=1 to construct an empirical version of the suboptimality loss function
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lsub(·). It solves the optimization problem (7) to obtain the estimator ĉt for each time step. The optimizer
of (7) can be interpreted as a “leader” that has the best performance on the past samples (though some
of which are corrupted).

Algorithm 1 Follow the Corrupted Leader

1: Input: dataset DT = {(x∗
t ,At, bt)}Tt=1

2: Let ĉ1 = 1/
√
n

3: for t = 2, ..., T do
4: Compute

ĉt = arg min
c∈Sn−1

t−1∑
s=1

(
max

xs≥0:Asxs=bs

c⊤xs

)
− c⊤x∗

s (7)

5: end for
6: Output: ĉ1, ..., ĉT

Theorem 3. Under Assumption 1 and Assumption 5, the following bound holds for any T ≥ 3,

RegT (π1) ≤ 2Dδ +
12D log T√

T
+

3D

T

where π1 represents the policy given by Algorithm 1.

Theorem 3 gives the regret bound of Algorithm 1. Its proof is based on a standard application of
Rademacher complexity. We first note that the objective function (7) is convex, so the optimization
problem can be solved much more efficiently than the problem of OPTδ(γ). Second, compared to the
benchmark in Proposition 5, the regret bound of Algorithm 1 has additional terms on the order of
O(1/

√
T ). The result shows the effectiveness of the “follow-the-leader” scheme and the unnecessity of

introducing a margin loss as the case of OPTδ(γ).

Algorithm 2 Online Corrupted Gradient Descent

1: Input: dataset DT = {(x∗
t ,At, bt)}Tt=1, a convex set K

2: Let ĉ1 be an arbitrary point in K
3: for t = 1, ..., T do
4: Compute

x̂∗
t = argmax

xt≥0:Atxt≤bt

(ĉt)
⊤xt

5: Update

ĉt+1 = ProjK

(
ĉt −

1

D
√
T
(x̂∗
t − x∗

t )

)
6: end for
7: Output: ĉ1, ..., ĉT

Our second algorithm – Algorithm 2 implements the standard online gradient descent procedure to
the problem. As we noted earlier, the loss function lsub(·) is convex. At each time t, the algorithm
computes the gradient ∇lsub(ĉt) and uses the gradient for an update in the space of objective coefficient
vector. This algorithm has a shortcoming in that it requires the candidate set for the objective coefficient
vector K = {c∗} ∪ supp{P ′

c} to be convex. This is the case (after some scaling) when the support of
the corruption distribution supp{P ′

c} stays within a half sphere that contains c∗. In the algorithm, a
projection step ensures ct ∈ K after the gradient update.
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Theorem 4. Suppose the set K is convex and bounded by 1 under the Euclidean norm. Under Assump-
tion 1 and Assumption 5, the following bound holds for any T ≥ 3,

RegT (π2) ≤ 2Dδ +
10D log T√

T
+

2D

T 2

where π2 represents the policy given by Algorithm 2.

Theorem 4 gives the regret bound of Algorithm 2. Its proof adapts the standard analysis of online
gradient descent to our case of corrupted observations. The result can also be viewed as a generalization
of the analysis in (Bärmann et al., 2018) from the case of δ = 0 to the case of δ > 0. We remark that
the regret bound here matches that of Theorem 3, while Algorithm 2 is computationally more efficient
than Algorithm 1.

5 Numerical Experiments, Extensions, and Discussions

5.1 Algorithms for Posterior Sampling

Now we discuss the computational aspects of the proposed algorithms to complement the theoretical
development in the previous sections. As mentioned earlier, the posterior sampling avoids the compli-
cation of optimizing over θ in the maximum likelihood estimation, but still inevitably needs to deal
with the sampling and numeric approximation of the likelihood function. Algorithm 3 describes a
standard Metropolis–Hastings algorithm to sample from the posterior distribution PT (·). In the nu-
merical experiments, we choose the proposal distribution Q to be a Gaussian random perturbation, i.e.,
θ′ = Proj(θ(k−1) + ϵ) where ϵ follows a Gaussian distribution and the projection ensures that θ′ stays
on the sphere Sn−1 × [κ, κ̄]. For the acceptance ratio, as the posterior distribution is not in closed form,
a Monte Carlo subroutine is needed to estimate the ratio.

Algorithm 3 Posterior Sampling for the Gaussian Setting

1: Input: dataset DT = {(x∗
t ,At, bt)}Tt=1, number of iterations K

2: Initialize θ(0) by randomly sampling from the prior distribution P0(θ)
3: for k = 1, ...,K do
4: Draw a random θ′ from a pre-determined proposal distribution Q(θ′|θ(k−1))
5: Compute the acceptance rate:

r = min

{
PT (θ′)

PT (θ(k−1))
, 1

}
6: Set

θ(k) =

{
θ′, w.p. r
θ(k−1), w.p. 1− r

7:
8: end for
9: Output: θ(K)

Algorithm 4 presents a simulated annealing algorithm to solve the optimization problem OPTδ(γ) in
Section 4.1. It takes a similar MCMC routine as in Algorithm 3 and we use the same Gaussian random
perturbation for the proposal distribution Q. As the temperature parameter η decreases, the sampling
distribution in Algorithm 4 will gradually be more concentrated on the optimal solution set of OPTδ(γ).
Algorithm 4 can be implemented more efficiently than Algorithm 3 in that the likelihood ratio calculation
in (8) is analytical.
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Algorithm 4 Simulated annealing algorithm for δ-corruption

1: Input: dataset DT = {(x∗
t ),At, bt}Tt=1, margin γ, number of iterations K, interval length τ

2: Initialize an initial (temperature) η > 0 and the reduction rate α ∈ (0, 1)
3: Randomly generate the first estimate c(0)

4: for k = 1, ...,K do
5: if k mod τ = 0 then
6: Update η ← α · η
7: end if
8: Draw a proposal c′ from a predetermined proposal distribution Q(c′|c(k−1))
9: Compute the acceptance rate:

r = min

{
exp

{
1

η
·

(
T∑
t=1

ICt(γ)(c
′)−

T∑
t=1

ICt(γ)(c
(k−1))

)}
, 1

}
(8)

10: Set

c(k) =

{
c′, w.p. r
c(k−1), w.p. 1− r

11: end for
12: Output: c(K)

Numerical Experiments.
We first illustrate Algorithm 3 and Algorithm 4 for a single-constraint case due to the high computa-

tional complexity to compute the acceptance rate. Specifically, we consider the underlying LP that has
the following form

max
x

c⊤x

s.t. a⊤x ≤ b, 0 ≤ x ≤ 1.

The reason why we consider the LP with inequality constraints is to guarantee feasibility. It can be
easily transferred to the standard form by adding slack variables. Table 1 reports some numerical results
for the two algorithms. For both the Gaussian and δ-corruption settings, we consider three distributions
of Pa,b: (i) a uniform distribution where a ∼Unif([1, 2]n) and b ∼Unif([1, n]); (ii) a discrete distribution
where a ∼ Unif({1, 2}n) and b ∼Unif(1, ..., n); (iii) a fixed-a distribution where a = (1, ..., 1)⊤ and
b ∼Unif(1, ..., n). For the Gaussian case, the true parameters (µ∗, κ∗) are uniformly generated from
Sn−1 × [1, 10], and the accuracy is calculated by (µ∗x∗ − µ∗x̃∗)/µ∗x∗ where x∗ and x̃∗ are defined in
Corollary 2. For the δ-corruption case, c∗ is uniformly generated from Sn−1, δ is set to be 0.1, and the
accuracy is calculated by Acc(ĉ)/Acc(c∗) where Acc(c) is defined in Section 4. The numbers in Table 1
are reported based on an average of 20 simulation trials, and we run both Algorithm 3 and Algorithm 4
for K = 1000 iterations with T = 1000 samples.

We make the following observations from the numerical experiments. First, we remark that the
theoretical results in the previous sections provide strong guarantees on the convergence property of the
posterior distribution. So the deterioration of the algorithm performance for the case when n = 25 is
solely caused by the inaccuracy of the approximate sampling in either Algorithm 3 or Algorithm 4. Such
inaccuracy can definitely be mitigated to some extent by a more efficient algorithm implementation such
as parallel computing. However, we argue that the performance deterioration as n grows may point to
a curse of dimensionality that is intrinsic to this estimation problem. Essentially, we aim to estimate a
high-dimensional distribution only through partial information, i.e., the sets Ct’s. On the positive end,
the algorithms work well for n ≤ 10, so if the decision maker has the power of choosing (at, bt), s/he can
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break up the high-dimensional estimation problem into a number of low-dimensional estimation problems
by focusing on a handful of dimensions each time. Moreover, we provide a visualization of the condition
(3) in Figure 3 for n = 5 calculated based on simulation. The visualization supports the existence of
M and thus the identifiability of the true parameters when the posterior sampling can be accurately
fulfilled.

For the multiple-constraint case, we only illustrate the performance of Algorithm 2 under the δ-
corruption case. Here, we also consider the LP with inequality constraints as following

max
x

c⊤x

s.t. A⊤x ≤ b, 0 ≤ x ≤ 1.

Moreover, we also consider three same distributions of PA,b:(i) a uniform distribution where A ∼Unif([1, 2]m×n)

and b ∼Unif([1, n]m); (ii) a discrete distribution where A ∼ Unif({1, 2}m×n) and b ∼Unif({1, ..., n}m);
(iii) a fixed-A distribution where A is an all-one matrix and b ∼Unif({1, ..., n}m). The underlying true
objective vector c∗ is uniformly generated from the standard simplex {c ≥ 0 : 1⊤c = 1}, and δ is
set to be 0.1. In Table 2, we report the regret defined in Section 4.2 and the accuracy calculated by
Acc(ĉ)/Acc(c∗). The numbers in Table 2 are reported based on an average of 100 simulation trials with
m = 5 constraints and T = 1000 samples. We observe that the regret is consistent with our theoretical
results that the regret is in the order of O(1/

√
T ). Moreover, the results also show that this gradient

based method though with a good predictive performance, can hardly recover the decisions.

n = 3 n = 5 n = 10 n = 25

(i) 99.9% 99.9% 98.8% 59.9%
Gaussian (ii) 99.9% 99.3% 96.9% 56.9%

(iii) 99.9% 94.8% 92.6% 68.5%

(i) 99.9% 96.7% 96.0% 55.7%
δ-corru. (ii) 99.6% 97.9% 97.6% 63.1%

(iii) 99.9% 98.7% 87.1% 58.7%

Table 1: Predictive Performance of Algorithm 3 and Algorithm 4

Figure 3: Visualization of (3).

5.2 Extensions to Other Settings

Noisy Observations

17



n = 3 n = 5 n = 10 n = 25

(i) 2× 10−4 4× 10−3 1× 10−2 1× 10−2

Regret (ii) 2× 10−3 2× 10−3 1× 10−2 3× 10−2

(iii) 2× 10−4 5× 10−4 2× 10−3 1× 10−3

(i) 71.1% 54.9% 26.0% 4.9%
Accuracy (ii) 78.6% 64.6% 30.1% 4.1%

(iii) 82.5% 73.8% 55.0% 19.9%

Table 2: Predictive Regret and Accuracy by Algorithm 2

So far we have been focused on the setting where the optimal solutions are accurately observed.
However, these observations can be noisy in a practical context which corresponds to the noisy setting of
inverse optimization (Aswani et al., 2018). Specifically, we observe a contaminated or suboptimal version
of the optimal solution:

x̃t = x∗
t + ηt

where ηt denotes the random noise. The setting is also known as the bounded rationality (Tversky and
Kahneman, 1985). For our stochastic inverse optimization problem, the goal becomes to estimate the
distribution of Pc from

D̃T := {(x̃t,At, bt)}Tt=1 .

For the Gaussian case, our analysis can be naturally extended to this noisy setting as the following
theorem. Compared to Theorem 1, the new definition of the set Θ̃T is based on the likelihood/distribution
of the noisy observation. All the remaining statements and proofs of Theorem 5 are identical to Theorem
1. Specifically, the theorem says that the posterior distribution will also concentrate around the true
underlying distribution given by the true parameter θ∗ even in this noisy case.

Theorem 5. Let

Θ̃T :=

{
θ ∈ Sn−1 × (κ, κ̄) : DTV (P ((x̃t,At, bt)|θ) ,P ((x̃t,At, bt)|θ∗)) ≤ max (8, 8κ̄)

√
n · log T√

T

}
where DTV (·, ·) is the total variation distance between two distributions supported on Rn × Rn+ × R+

equipped with Euclidean metric. Then, under Assumptions 1-2,

1− PT (Θ̃T )→ 0 in probability as T →∞.

Specifically, the following inequality holds

E
[
PT
(
Θ̃T

)]
≥ 1− 3

T
.

where the expectation is taken with respect to the random distribution PT (·) (essentially, with respect to
the dataset D̃T ).

For the δ-corruption case, we first note that as long as x̃t and x̃t share the same optimal basis, they
correspond to the same set Ct. For the case that x̃t and x̃t correspond to different optimal bases, we
can view it as the part of the δ-corruption. In this way, the results in the δ-corruption case can also be
applied to here.

Contextual Setting
Another interesting setting is that the decision maker observes not only the optimal action x∗

t and
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the coefficient pair (At, bt), but also some context vector zt for each time period. We remark that our
posterior sampling result in Section 3 is also applicable to this contextual setting. Specifically, we can
reconstruct the observation set as

D̃T := {(x∗
t ,At, bt, zt)}Tt=1.

Then, as in Section 3, we compute the posterior distribution P(D̃T |θ). Finally, we can either sample one
parameter θT from this posterior distribution if this distribution is concentrated, or find the parameter
maximize posterior distribution if the distribution is computationally tractable.

5.3 Discussions

We conclude our discussion with the following remarks.
Query-based model with user-chosen (At, bt): In this paper, we have focused on the case where the

constraints (At, bt)’s are stochastically generated. When the concentration parameter κ is known for
the Gaussian case, there is an efficient way of learning µ through choosing (At, bt)’s (See the Appendix
D.2). In addition, the numerical experiments above also inspire a potential approach that dismantles the
high-dimensional estimation problem into a number of low-dimensional problems. Another interesting
and important question is whether there exist designs of (At, bt)’s such that the posterior sampling can
be more efficiently carried out.

Better algorithm design: We formulate the problem of stochastic inverse optimization and propose
several algorithms to solve the problems in various settings. However, these algorithms all suffer from
certain limitations. For example, the posterior sampling-based algorithms (Algorithm 3 and Algorithm
4) suffer from the curse of high-dimensionality, while the online gradient descent algorithm (Algorithm
2) requires the unknown objective coefficient vector to stay within a convex region. There might be
some other algorithm design such as the expectation-maximization algorithm that deserves more future
investigation.

Choice modeling: The stochastic utility model in our paper also draws an interesting connection with
the literature on choice modeling, which is a pillar for the pricing and assortment problems in revenue
management (Talluri et al., 2004; Gallego et al., 2019). For most of the existing choice models, the
learning problem can be viewed as a special case of our study by letting A = (1, ..., 1)⊤ and b = 1. The
results in our paper complement this line of literature in developing a model where customers can make
multiple purchases.
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A Auxiliary Lemmas

We present some preliminary lemmas in this section, most of which are basic inequalities from information
theory.

Lemma 1 (Pinsker’s inequality). For any two distributions P1 and P2,

DTV (P1,P2) ≤
√

1

2
DKL(P1,P2),

where DTV (·, ·) and DKL(·, ·) denote the total variation distance and the KL-divergence between two
distributions, respectively.

Proof. We refer to Lemma 6.2 of Gray (2011).

Lemma 2 (Data processing inequality). Let {Kλ}λ∈X be a set of random variables indexed by parameter
λ in some space X . Consider two random variables Λ1,Λ2 taking values in X . The following inequality
holds

DKL(KΛ1 ,KΛ2) ≤ DKL(Λ1,Λ2),

where DKL(·, ·) denotes the KL-divergence between two distributions. Here {Kλ}λ∈X is usually called as
a Markov kernel, a transition probability distribution, or a statistical kernel.

Proof. We refer to Theorem 14 of Liese and Vajda (2006).

Lemma 3 (Packing number). Let Br denote the ball in Rn centered at original point (or any point) with
radius r. Then, the ϵ-packing number of Br is upper bounded by(

1 +
2r

ϵ

)n
.

In other words, there exist at most
(
1 + 2r

ϵ

)n disjoint balls with radius of ϵ
2 in Br.

Proof. Assume that there are M disjoint ϵ/2-balls. Then, the total volume of those M balls cannot be
larger than the volume of a r + ϵ/2 ball, i.e.,

M ·
( ϵ
2

)n
≤ (r +

ϵ

2
)n,

which implies

M ≤
(
1 +

2r

ϵ

)n
.
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Lemma 4 (Hoeffding’s inequality). Let X1, ..., XT be independent random variables such that Xt takes
its values in [ut, vt] almost surely for all t ≤ T. Then the following inequality holds

P

(∣∣∣∣∣ 1T
n∑
t=1

Xt − EXt

∣∣∣∣∣ ≥ s
)
≤ 2 exp

(
− 2T 2s2∑n

i=1(ut − vt)2

)

for any s > 0.

Proof. We refer to Chapter 2 of Boucheron et al. (2013).

Lemma 5 (Doob’s consistency theorem). Suppose that P(·|θ) ̸= P(·|θ′) whenever θ ̸= θ′. Then, for
every prior probability measure on the parameter space, the sequence of posterior measures converges to
the point mass distribution of the true parameter in distribution for almost every θ.

Proof. We refer to Chapter 10.10 of Van der Vaart (2000).

Lemma 6. Let F be a set of functions whose domain is the support of the distribution of (x∗,A, b).
For any probability distribution P̃ on F , the following inequality holds for all f ∈ F and all distributions
Q̃ on F simultaneously

EQ̃ [E[f(x∗,A, b)]] ≤ EQ̃

[
T∑
t=1

f(x∗
t ,At, bt)

]
+

√
DKL(P̃, Q̃) + log T

ϵ + 2

2T − 1
.

with probability no less than 1− ϵ. Here the inner expectation on the left-hand-side is taken with respect
to (x∗,A, b).

Proof. We refer to Theorem 1 in McAllester (2003).

The following lemma provides a useful bound for the modified Bessel function of the first kind. This
function is closely related to the density of the von Mises–Fisher distribution. Typically, the modified
Bessel function of the first kind is denoted by Iν(x) with the parameter ν. In this paper, to distinguish
between the indicator function and this modified Bessel function, we denote the modified Bessel function
of the first kind by Ĩν(x), which is defined as

Ĩν(x) :=

∞∑
t=0

1

t ! Γ(t+ ν + 1)

(x
2

)2t+ν
,

where Γ(·) denotes the gamma function.

Lemma 7. For all 0 < x < y and ν > 0,

ex−y
(
x

y

)ν
≤ Ĩν(x)

Ĩν(y)
≤ ey−x

(
x

y

)ν
,

where Ĩν(·) denotes the modified Bessel function of the first kind.

Proof. We refer to Chapter 2 of Baricz (2010).

Lemma 8 (Rademacher Complexity). Let F be a class of functions f : X → [a, b], and {Xt}Tt=1 be i.i.d.
random variables taking values in X . Then the following inequality holds for any s > 0

P

(
sup
f∈F

∣∣∣∣∣ 1T
T∑
t=1

f(Xt)− E[f(X1)]

∣∣∣∣∣ ≤ E

[
sup
f∈F

∣∣∣∣∣ 1T
T∑
t=1

σtf(Xt)

∣∣∣∣∣
]
+ s

)
≤ exp

(
2Ts2

(b− a)2

)
,

where {σt}Tt=1 denotes a set of i.i.d. random signs satisfying P(σt = 1) = P(σt = −1) = 1
2 .
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Proof. We refer to Theorem 4.10 in Wainwright (2019).

Lemma 9 (Theorem 3.1 in Hazan (2016)). Let {ft(c)}Tt=1 be a sequence of convex functions defined on
a convex set K. Suppose that K is contained in the unit ball with 2-norm, and ∥∇ft(c)∥2 ≤ G for all
c ∈ K and all t = 1, ..., T . Let ĉt+1 = ĉt − 2

G
√
t
∇ft(ĉt). Then, the following inequality holds

T∑
t=1

ft(ĉt)−min
c∈K

T∑
t=1

ft(c) ≤ 3G
√
T .

Proof. We refer to Theorem 3.1 in Hazan (2016).

A.1 Proof of Proposition 1

Proof. For an observation of (x∗,A, b), let

C :=
{
c ∈ Sn−1 : x∗ is an optimal solution of LP(c,A, b)

}
.

Denote N = {i : x∗i = 0} be the index set of zero entries of x∗. The corresponding variables are
called non-basic variables.

From the LP’s optimality conditions, we know that c ∈ C if and only if the following inequality holds:

rN := cN −AN (AB)
−1cB ≥ 0, (9)

which can be expressed by linear constraints. Here, cB denotes the vector consisting of entries of c

corresponding to the index set B, cB denotes the vector consisting of entries of c corresponding to the
index set N , and AN denotes the matrix consisting of columns of A corresponding to the index set N .
For more detials about LP’s optimality conditions, we refer to Section 4 in Luenberger and Ye (2021).

B Proof of Section 3

In this section, we provide the proofs of Section 3 and analyze the convergence of the posterior distribu-
tion. We remark that the total variation distance in Theorem 1 is not essential, and other metrics such
as the Wasserstein distance, the Hellinger distance, and the Prokhorov metric are also valid (See Gibbs
and Su (2002) for more about the relationships between different probability metrics). We first show
several lemmas and then prove the main theorem.

B.1 Proof of Proposition 2

Proof. Consider the case that n = 2 and κ is fixed. In this case, we only have two observations D2 =

{(x∗
t ,At, bt)}2t=1. Let C1, C2 be the sets of all possible values of the objective vectors that is consistent

with the two observations, respectively. Suppose

C1 =

{
(cosα, sinα) : α ∈

[
−π
4
,
3π

4

]}
,

C2 =

{
(cosα, sinα) : α ∈

[
−3π

4
,
π

4

]}
as shown in Figure 2.
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Now, we show that for a fixed and large enough κ, µ1 = (1, 0) and µ2 = (−1, 0) are local minima of
the negative likelihood function. To see this, we first compute the probability of the dataset D2 for any
given µ = (cosϕ, sinϕ) with fixed known κ,

P (D2|(µ, κ)) =
1

4π2I20 (κ)

∫ 3π/4

−π/4
exp(κ cos(ψ + ϕ))dψ

∫ 3π/4

−π/4
exp(κ cos(ψ − ϕ))dψ, (10)

where ϕ ∈ [0, 2π) is the radian corresponding to the vector µ. The first order derivative of (10) with
respect to ϕ is

dP (D2|(µ, κ))
dϕ

=
1

4π2I20 (κ)

[
(exp (κ cos(−π/4− ϕ))− exp (κ cos(3π/4− ϕ)))

∫ 3π/4

−π/4
exp(κ cos(ψ + ϕ))dψ

− (exp (κ cos(−π/4 + ϕ))− exp (κ cos(3π/4 + ϕ)))

∫ 3π/4

−π/4
exp(κ cos(ψ − ϕ))dψ

]
,

which implies µ1 and µ2 are critical points. That is,

dP (D2|(µ, κ))
dϕ

∣∣∣∣
ϕ=0

=
dP (D2|(µ, κ))

dϕ

∣∣∣∣
ϕ=π

= 0.

Similarly, we have that the second order derivatives at µ1 and µ2 are

d2P (D2|(µ, κ))
dϕ2

∣∣∣∣
ϕ=0

= − 1

4π2I20 (κ)

[
√
2

(
exp

(√
2κ

2

)
+ exp

(
−
√
2κ

2

))∫ 3π/4

−π/4
exp(κ cos(ψ))dψ (11)

+2

(
exp

(√
2κ

2

)
− exp

(
−
√
2κ

2

))2
 ,

d2P (D2|(µ, κ))
dϕ2

∣∣∣∣
ϕ=π

=
1

4π2I20 (κ)

[
√
2

(
exp

(√
2κ

2

)
+ exp

(
−
√
2κ

2

))∫ 7π/4

3π/4

exp(κ cos(ψ))dψ (12)

−2

(
exp

(√
2κ

2

)
− exp

(
−
√
2κ

2

))2
 .

Then, from (11), it is easy to see that d2P(D2|(µ,κ))
dϕ2

∣∣∣
ϕ=0

< 0, which implies µ1 = (1, 0) is a minimizer of

the negative likelihood function. Moreover, since the numerator of (12) satisfies

lim
κ→∞

√
2
(
exp

(√
2κ
2

)
+ exp

(
−

√
2κ
2

)) ∫ 7π/4

3π/4
exp(κ cos(ψ))dψ − 2

(
exp

(√
2κ
2

)
− exp

(
−

√
2κ
2

))2
exp

(√
2κ
) = −2,

we have d2P(D2|(µ,κ))
dϕ2

∣∣∣
ϕ=π

< 0 when κ is large enough. Thus, for large κ, we have µ2 = (−1, 0) is also a

minimizer of the negative likelihood function.
Next, we show that the gap between the likelihood function value at µ1 and that at µ2 can be

arbitrarily close to 1. It is sufficient to directly show that the gap between P(D2|(µ1, κ)) and P(D2|(µ2, κ))
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goes to 1 as κ goes to infinity. To see this, we have

P(D2|(µ1, κ)) =

(
1

2πI0(κ)

∫ 3π/4

−π/4
exp (κ cosψ) dψ

)2

=

 ∫ 3π/4

−π/4 exp (κ cosψ) dψ∫ 3π/4

−π/4 exp (κ cosψ) dψ +
∫ 7π/4

3π/4
exp (κ cosψ) dψ

2

→ 1, ,as κ→∞,

where the first line comes from (10), the second line comes from the definition of I0(κ), and the last line

comes from lim
κ→∞

∫ 7π/4

3π/4
exp(κ cosψ)dψ∫ 3π/4

−π/4
exp(κ cosψ)dψ

= 0. Similarly, we have

P(D2|(µ1, κ))→ 0, ,as κ→∞.

Thus we complete the proof.

B.2 Lemmas for the Proof of Theorem 1

Recall DT = {(x∗
t ,At, bt)}Tt=1 is the dataset, and P((x∗,A, b)|θ) is the likelihood distribution under the

parameter θ. In the following, we denote the parameter space Sn−1 × (κ, κ̄) by Θ, denote the total
variation distance between P((x∗,A, b)|θ1) and P((x∗,A, b)|θ2) by DTV (θ1,θ2), where θ1,θ2 ∈ Θ are
two parameters, and denote the ϵ-packing number of a parameter subset Θ̃ ⊂ Θ with a metric Dmetric by
N
(
ϵ, Θ̃, Dmetric

)
. For example, if the underlying metric is the total variation metric, the corresponding

ϵ-packing number is denoted by N
(
ϵ, Θ̃, DTV

)
.

Lemma 10 (Theorem 7.1 in (Ghosal et al., 2000)). Suppose the ϵ/2-packing number of the parameter
space Θ with the total variation distance is bounded by some constant C, i.e.,

N
( ϵ
2
,Θ, DTV

)
≤ C.

Then, for t, j ∈ N, there exist a function ϕt, which maps a dataset Dt with t samples to [0, 1], such that

Eθ∗ [ϕt] ≤
C exp(−2tϵ2)
1− exp(−2tϵ2)

, (13)

sup
DTV (θ,θ∗)>jϵ

Eθ[1− ϕt] ≤ exp(−2tj2ϵ2), (14)

where the expectation is taken with respect to the underlying dataset Dt under a distribution specified by
the corresponding parameter in the subscript.

Proof. We refer to Theorem 7.1 of Ghosal et al. (2000).

Intuitively, the lemma states that if the packing number is bounded, we can find a function ϕt such
that its expectation is close to 0 when taken under a distribution with the true parameter, and it is
close to 1 otherwise. In statistics, the function ϕt naturally serves as a test, and it distinguish the wrong
parameters from the true parameters. In the proof of Theorem 1, we will see that this test function ϕt

plays an important role in bounding the numerator of the posterior distribution.
To apply this lemma for the proof of Theorem 1, we first calculate a bound for the packing number of

the parameter space to meet the lemma’s condition. Here DKL(·, ·) denotes the KL divergence between
two distributions.
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Lemma 11. For any two parameters θ1 = (µ1, κ1) and θ2 = (µ2, κ2) in Θ := Sn−1 × (κ, κ̄),

DTV (θ1,θ2) ≤
√

1

2
DKL(P((x∗,A, b)|θ1),P((x∗,A, b)|θ2)) ≤

√
∥κ1µ1 − κ2µ2∥2. (15)

Furthermore, we have

N (ϵ,Θ, DTV ) ≤
(
1 +

max(2, 2κ̄)

ϵ2

)n
.

Proof. The first inequality comes directly from Pinsker’s inequality (Lemma 1). For the second inequality,
from Lemma 2, we have

DKL(P((x∗,A, b)|θ1),P((x∗,A, b)|θ2))

≤ DKL(Pc(·|θ1),Pc(·|θ2))

=

∫
c∈Sn−1

Cn(κ1) exp(κ1µ
⊤
1 c) · log

(
Cn(κ1) exp(κ1µ

⊤
1 c)

Cn(κ2) exp(κ2µ⊤
2 c)

)
=

∫
c∈Sn−1

Cn(κ1) exp(κ1µ
⊤
1 c) ·

(
(κ1µ1 − κ2µ2)

⊤c+ log

(
κ
n/2−1
1 Ĩn/2−1(κ2)

κ
n/2−1
2 Ĩn/2−1(κ1)

))

≤
∫
c∈Sn−1

Cn(κ1) exp(κ1µ
⊤
1 c) ·

(
(κ1µ1 − κ2µ2)

⊤c+ |κ1 − κ2|
)

≤ 2∥κ1µ1 − κ2µ2∥2,

where

Cn(κ) =

(∫
c∈Sn−1

exp(κµ⊤c)

)−1

=
κn/2−1

(2π)n/2Ĩn/2−1(κ)
,

which is independent of the choice of µ ∈ Sn−1, and Ĩn/2−1(·) denotes the modified Bessel functions of
the first kind. Here, the first line comes from Lemma 2. The second line comes from the definition of the
KL-divergence and the density function of the von Mises–Fisher distribution, and the third line comes
from the definition of Cn(κ). The fourth line comes from Lemma 7 that∣∣∣∣∣log κ

n/2−1
1 Ĩn/2−1(κ2)

κ
n/2−1
2 Ĩn/2−1(κ1)

∣∣∣∣∣ ≤ ∣∣max(log eκ1−κ2 , log eκ2−κ1)
∣∣ = |κ1 − κ2|,

and the last line comes from Cauchy inequality that

(κ1µ1 − κ2µ2)
⊤c ≤ ∥κ1µ1 − κ2µ2∥2∥c∥2 = ∥κ1µ1 − κ2µ2∥2.

Therefore, the ϵ2-ball centered at some θ̃ with the L2-norm is a subset of the ϵ-ball centered at θ̃

with the total variation metric, i.e.,

{θ : ∥θ − θ̃∥2 ≤ ϵ2} ⊂ {θ : DTV (θ, θ̃) ≤ ϵ}.

Thus, the ϵ-packing number of Θ with the total variance metric is bounded by the ϵ2-packing number of
Θ with the L2-norm, that is,

N (ϵ,Θ, DTV ) ≤ N (ϵ2,Θ, ∥ · ∥2).
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Finally, from Lemma 3, the following inequality holds

N (ϵ,Θ, DTV ) ≤
(
1 +

max(2, 2κ̄)

ϵ2

)n
for all ϵ < 1.

The above lemma establishes the condition of Lemma 10 under our context. The following lemma
concerns a bound on the likelihood ratio. Specifically, we will use the test function ϕt in (13) and (14)
to establish the concentration in Theorem 1. However, the underlying measure for (14) is with respect
to the parameter θ but not the true parameter θ∗. To utilize the function ϕt, we need to change the
measure using the likelihood ratio, and the following lemma gives a bound for the likelihood ratio.

Lemma 12. For any ϵ > 0, the following inequality holds with probability no less than 1−exp(−Tϵ2/4κ̄2),∫
Θ

dP(DT |θ)
dP(DT |θ∗)

P0(θ) ≥
(
2ϵ2

κ̄

)n
· exp(−Tϵ2). (16)

Proof. Let
ΘKL(ϵ) :=

{
θ ∈ Θ : DKL(P((x∗,A, b)|θ∗),P((x∗,A, b)|θ)) ≤ ϵ2

}
.

By inequality (15) in Lemma 11, we have that ΘKL(ϵ) contains the 2ϵ2-ball centered at θ∗ under the
Euclidean norm and, therefore,

P0(ΘKL(ϵ)) ≥
(
2ϵ2

κ̄

)n
. (17)

Next, we show that with probability no less than 1− exp(−Tϵ2/4κ̄2),∫
ΘKL(ϵ)

dP(DT |θ)
dP(DT |θ∗)

P0(θ) ≥ exp
(
−Tϵ2

)
· P0(ΘKL(ϵ)). (18)

Since the range of the density function of Pc(·|θ) is between [e−κ̄, eκ̄] for all θ ∈ Θ, we have that

exp(−2κ̄) ≤ dPc(·|θ)
dPc(·|θ∗)

≤ exp(2κ̄), (19)

where dPc(·|θ)
dPc(·|θ∗) denotes the Radon–Nikodym derivative between Pc(·|θ) and Pc(·|θ∗). For any set D in

X × Rm×n × Rm, we have∫
D
dP((x∗,A, b)|θ) =

∫
A,b

∫
c∈Sn−1

ID(x
∗(c,A, b),A, b)dPc(c|θ)dPA,b(A, b)

=

∫
A,b

∫
c∈Sn−1

ID(x
∗(c,A, b),A, b)dPc(c|θ)dPA,b(A, b)

=

∫
A,b

∫
c∈Sn−1

dPc(·|θ)
dPc(·|θ∗)

ID(x
∗(c,A, b),A, b)dPc(c|θ∗)dPA,b(A, b)

≤ exp(2κ̄)

∫
A,b

∫
c∈Sn−1

ID(x
∗(c,A, b),A, b)dPc(c|θ∗)dPA,b(A, b)

= exp(2κ̄)

∫
D
dP((x∗,A, b)|θ∗),

where the fourth line comes from (19), and all others come from direct calculations. The inequality
above implies

log
dP((x∗,A, b)|θ)
dP((x∗,A, b)|θ∗)

≤ 2κ̄
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holds almost surely for P((x∗,A, b)|θ∗), where dP((x∗,A,b)|θ)
dP((x∗,A,b)|θ∗) denotes the Radon–Nikodym derivative

between those two probability distributions. Hence,

−2κ̄ ≤ log
dP((x∗,A, b)|θ)
dP((x∗,A, b)|θ∗)

≤ 2κ̄.

Here, we emphasize that this bound of the Radon–Nikodym derivative still holds even if the optimal
solution x∗ is not deterministically determined by the objective vector c and the coefficient pair (A, b),
but by a random distribution conditional on the objective vector and the coefficient pair.

Then, by Hoeffding’s inequality (Lemma 4), the following inequality holds with probability no less
than 1− exp(−Tϵ2/4κ̄2),

T∑
t=1

∫
ΘKL(ϵ)

log
dP((x∗

t ,At, bt)|θ)
dP((x∗

t ,At, bt)|θ∗)

dP0(θ)

P0(ΘKL(ϵ))

≥TEθ∗

(∫
ΘKL(ϵ)

log
dP((x∗

t ,At, bt)|θ)
dP((x∗

t ,At, bt)|θ∗)

dP0(θ)

P0(ΘKL(ϵ))

)
− Tϵ2 (20)

=T

∫
ΘKL(ϵ)

DKL(P((x∗,A, b)|θ∗),P((x∗,A, b)|θ)) dP0(θ)

P0(ΘKL(ϵ))
− Tϵ2

≥− Tϵ2

where the second line comes directly from Hoeffding’s inequality, the third line comes from Fubini’s
theorem and the definition of the KL divergence, and the last line comes from the non-negativity of the
KL divergence. Then, by Jensen’s inequality,

log

(∫
ΘKL(ϵ)

dP(DT |θ)
dP(DT |θ∗)

dP0(θ)

P0(ΘKL(ϵ))

)
= log

(∫
ΘKL(ϵ)

T∏
t=1

dP((x∗
t ,At, bt)|θ)

dP((x∗
t ,At, bt)|θ∗)

dP0(θ)

P0(ΘKL(ϵ))

)
(21)

≥
T∑
t=1

∫
ΘKL(ϵ)

log
dP((x∗

t ,At, bt)|θ)
dP((x∗

t ,At, bt)|θ∗)

dP0(θ)

P0(ΘKL(ϵ))
,

We can prove (18) by combining (20) with (21).
Finally, with probability no less than 1− exp(−Tϵ2/4κ̄2),∫

Θ

dP(DT |θ)
dP(DT |θ∗)

dP0(θ) ≥
∫
ΘKL(ϵ)

dP(DT |θ)
dP(DT |θ∗)

dP0(θ)

≥ exp
(
−Tϵ2

)
· P0(ΘKL(ϵ))

≥
(
2ϵ2

κ̄

)n
· exp(−Tϵ2),

where the first inequality is obtained by the non-negativity of the integrand, the second inequality comes
from (18), and the last line comes from (17).

B.3 Proof of Theorem 1

In this part, we combine three lemmas in the previous section and show Theorem 1.

Proof. Let

ϵT = max(4, 4κ̄)

√
n · log T√

T
.
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By Lemma 12, we have, with probability no less than 1− exp(−Tϵ2/4κ̄2), the inequality∫
Θ

dP(DT |θ)
dP(DT |θ∗)

dP0(θ) ≥
(
2ϵ2T
κ̄

)n
· exp(−Tϵ2T ) ≥ exp(−2Tϵ2T ) (22)

holds for all T satisfying T ≥ n log T . In (26), we will use this inequality to establish a lower bound for
the denominator of the posterior distribution.

By Lemma 11, we have for all T ≥ 3

N
(ϵT
2
,Θ, DTV

)
≤
(

5T

16n · log T

)n
≤ exp(Tϵ2T ),

which gives an upper bound of the packing number and thus verifies the condition of Lemma 10. Then,
by Lemma 10, for all T ≥ 4, there exists a function ϕT mapping the data set DT to [0, 1], which satisfies

Eθ∗ [ϕT ] ≤
exp(Tϵ2T ) exp(−2Tϵ2T )

1− exp(−2Tϵ2T )
≤ 2 exp(−Tϵ2T ), (23)

sup
DTV (θ,θ∗)>2ϵT

Eθ[1− ϕT ] ≤ exp(−4Tϵ2T ). (24)

Recall

ΘT :=

{
θ ∈ Θ : DTV (P ((x∗,A, b)|θ) ,P ((x∗,A, b)|θ∗)) ≤ max (8, 8κ̄)

√
n · log T√

T

}
We then have

Eθ∗

[
(1− ϕT )

∫
Θc

T

T∏
t=1

P(DT |θ)
P(DT |θ∗)

P0(θ)

]
=

∫
Θc

T

Eθ∗

[
(1− ϕT )

T∏
t=1

P(DT |θ)
P(DT |θ∗)

]
P0(θ)

=

∫
Θc

T

Eθ(1− ϕT )P0(θ) (25)

≤ exp(−4Tϵ2T ),

where the first line is obtained by Fubini’s theorem, the second line is obtained directly by computing
the inner integral, and the last line comes from the definition of ΘT and inequality (24). Denote the low
probability event corresponding to inequality (22) as ET . By combining (22) and (25), we have

Eθ∗ [PT (ΘcT )(1− ϕT )IET
] = Eθ∗

 (1− ϕT )IET

∫
Θc

T

P(DT |θ)
P(DT |θ∗)P(θ)∫

Θ
P(DT |θ)
P(DT |θ∗)P(θ)


≤ exp(−4Tϵ2T ) exp(2Tϵ2T ) = exp(−2Tϵ2T ), (26)

where the first equality comes from the definition of the posterior distribution, and the second line is
obtained by plugging in (22) and (25).

Finally, we have

Eθ∗ [PT (ΘT )] ≥ 1− Eθ∗ [(1− ϕT )IET
PT (ΘcT )]− Eθ∗ [ϕTPT (ΘcT )]− Eθ∗

[
IEc

T
PT (ΘcT )

]
≥ 1− Eθ∗ [(1− ϕT )IET

PT (ΘcT )]− Eθ∗ [ϕT ]− Eθ∗
[
IEc

T

]
(27)

≥ 1− 2 exp(−Tϵ2T )− exp

(
Tϵ2T
4κ̄2

)
≥ 1− 3

T
,
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where the first line comes from the fact that the posterior probability is bounded by 1, the second line
comes from (23) and (26), and the last line comes from the definition of ϵT . The inequality above also
indicates that PT (ΘT ) converges to 1 in L1 norm, which implies the convergence in probability.

B.4 Proof of Corollary 1

Proof. The convergence of the posterior distribution to the point mass distribution can be directly
obtained by Doob’s consistency theorem (Lemma 5). Here, we only show the second part, i.e., the upper
bound of the posterior expectation ET [∥κTµT − κ∗µ∗∥2].

From the proof of Theorem 1, we have that, there exists a high probability event ẼT satisfying

Pθ∗(ẼT ) ≥ 1− 1

T

such that

Eθ∗
[
PT (ΘcT )IẼT

]
≤ 2

T
.

Then, by Markov’s inequality, we have for all T ≥ 4,

Pθ∗

(
PT (ΘcT ) >

√
n log T

2M
√
T

)
≤ Pθ∗(ẼcT ) + Pθ∗

(
ẼT ∩

(
PT (ΘcT ) >

√
n log T

2M
√
T

))
(28)

≤ 1

T
+

4M
√
n log T ·

√
T
≤ 1 + 4M√

T

where the first line comes from a decomposition of the event, the second line comes from Markov’s
inequality, and the last comes from n ≥ 1 , T ≥ 4.

Next, from the condition (3),

DTV (P ((x∗
t ,At, b)|θ) ,P ((x∗

t ,At, b)|θ∗)) ≥M · ∥κµ− κ∗µ∗∥2.

Consequently, for any θ = (µ, κ) ∈ ΘT , we have

∥κµ− κ∗µ∗∥2 ≤ max (8, 8κ̄)

√
n · log T
M ·
√
T

. (29)

Combining (28) and (29), we have with probability no less than 1− 4M+1√
T

ET [∥κTµT − κ∗µ∗∥2] ≤ max (8, 8κ̄)

√
n · log T
M ·
√
T
· PT (ΘT ) + 2κ̄ · PT (ΘcT )

≤ max (8, 8κ̄)

√
n · log T
M ·
√
T

+max (1, κ̄)

√
n · log T
M ·
√
T

= max (9, 9κ̄)

√
n · log T
M ·
√
T

.

Here, the first inequality is obtained by the fact the the maximum distance between two different pa-
rameters are bounded by 2κ̄, and the second inequality is obtained by (29).

B.5 Proof of Corollary 2

Proof. Recall the definition of ΘT

ΘT =

{
θ ∈ Θ : DTV (P ((x∗,A, b)|θ) ,P ((x∗,A, b)|θ∗)) ≤ max (8, 8κ̄)

√
n · log T√

T

}
.
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In a similar way as (28), we obtain

Pθ∗

(
PT (ΘcT ) >

√
n log T

2
√
T

)
≤ 5√

T
.

Then we utilize the total variation distance to bound the difference between optimal solutions. From the
integral representation of the total variation distance, we have, for any θ,

DTV (P ((x∗,A, b)|θ) ,P ((x∗,A, b)|θ∗)) =
1

2

∫
(x∗,A,b)

∣∣∣∣1− dP ((x∗,A, b)|θ∗)

dP ((x∗,A, b)|θ)

∣∣∣∣dP ((x∗,A, b)|θ) . (30)

On the right hand side, the ratio dP((x∗,A,b)|θ)
dP((x∗,A,b)|θ∗) can be viewed as the probability ratio that the optimal

solutions (corresponding to θ∗ and θ) coincide for a fixed pair of (A, b). Thus, the integration calculates
the probability that the the optimal solution corresponding to θ is different from the optimal solution
corresponding to θ∗. Let θT be a random parameter drawn from the posterior distribution. Denote x̃∗

as the optimal solution corresponding to θT given (A, b), and x∗ as the optimal solution corresponding
to θ∗ given (A, b). We have

PT (x∗ ̸= x̃∗) ≤ 2DTV (P ((x∗,A, b)|θT ) ,P ((x∗,A, b)|θ∗)) . (31)

Thus, with probability no less than 1− 5√
T

, we have

E[∥x∗ − x̃∗∥2] ≤
√
nPT (x∗ ̸= x̃∗)

≤ 2
√
nDTV (P ((x∗,A, b)|θT ) ,P ((x∗,A, b)|θ∗)) ,

≤ max (16, 16κ̄)

√
n · log T√

T

where the first line comes from the fact that the maximum distance between any two solutions is bounded
by
√
n, the second line comes from (31), and the last line comes from the definition of ΘT .

C Proof of Section 4

In this section, we prove the results in Section 4.

C.1 Proof of Proposition 3

Proof. The proof is a direct application of Hoeffding’s inequality. Denote Xt as the indicator function of
ct ̸= c∗. By Hoeffding’s inequality, we have

P

(
1

T

T∑
t=1

Xt ≤ δ +
log T√
T

)
≤ 1

T
.

Then, it is sufficient to show that

max
c∈Sn−1

∣∣∣∣∣ 1T
T∑
t=1

ICt
(c)− 1

T

T∑
t=1

IC̄t
(c)

∣∣∣∣∣ ≤ 1

T

T∑
t=1

Xt.
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To see this, we have

max
c∈Sn−1

∣∣∣∣∣ 1T
T∑
t=1

ICt(c)−
1

T

T∑
t=1

IC̄t
(c)

∣∣∣∣∣ ≤ max
c∈Sn−1

∣∣∣∣∣∣ 1T
∑

{t:Xt=1}

ICt(c)−
1

T

∑
{t:Xt=1}

IC̄t
(c)

∣∣∣∣∣∣
≤ max

c∈Sn−1

1

T

∑
{t:Xt=1}

∣∣ICt
(c)− IC̄t

(c)
∣∣

≤ max
c∈Sn−1

1

T

∑
{t:Xt=1}

1

=
1

T

T∑
t=1

Xt,

where the first inequality is obtained by the fact that ICt(c) = IC̄t
(c) if Xt = 0, the second line comes

from Jensen’s inequality for the absolute value function, and the last two lines come directly from the
property of indicator functions.

C.2 Proof of Proposition 4

Proof. In this part, we will show a stronger statement that, for all γ > 0,

max
c:∥c∥2≤1

−Acc(c) +
1

T

T∑
t=1

ICt(γ)(c) ≤ 4

√
(1 +mσ2) log T

γ2T
+ 4

√
log(T/ϵ)

T
,

where the uniform bound holds for all c in the unit ball (instead of the unit sphere).
Specifically, we utilize Lemma 6 to prove the above inequality. For any c0 in the unit ball, let

Q = N (0, τ2In) and Q0 = N (c0, τ
2In) be two normal distributions over the estimated parameter space,

where In is the n-dimensional identity matrix and τ is a constant to be determined. We remark that our
choice of Q0 and Q will not affect the distribution of (ct,At, bt), which depends on PA,b, Pc, δ, and c∗.
Thus, by Lemma 6, the following inequality holds for all c0 in the unit ball and τ ≥ 0 with probability
no less than 1− ϵ,

EQ0

[
E
[
I(C(γ))c(c)

]]
≤ 1

T
EQ0

[
T∑
t=1

I(Ct(γ))c(c)

]
+

√
DKL(Q,Q0) + log T

ϵ + 2

2T − 1
,

where Ec denotes the complement of a set E . We note that on the left-hand-side, the inner expectation
is taken with respect to the indicator function (essentially the set C(γ)), and the outer expectation is
taken with respect to c ∼ Q0. For the right-hand-side, the expectation is taken with respect to c ∼ Q0.

Consequently, we have

EQ0

[
E
[
I(C(γ))c(c)

]]
≤ 1

T
EQ0

[
T∑
t=1

I(Ct(γ))c(c)

]
+

√
∥c0∥2

2

2τ2 + log T
ϵ + 2

2T − 1
(32)

≤ 1

T
EQ0

[
T∑
t=1

I(Ct(γ))c(c)

]
+ 2

√
∥c0∥2

2

2τ2 + log T
ϵ

T
.

Here, the first line is obtained by calculating of the KL-divergence between two Gaussian distributions
Q and Q0, and the second line is a further simplification of the second line.
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Now we analyze the left-hand-side and show that

I(C(0))c(c0)− exp

(
− γ2

2τ2(1 +mσ2)

)
≤ EQ0

[
I(C(γ))c(c0)

]
≤ I(C(2γ))c(c0) + exp

(
− γ2

2τ2(1 +mσ2)

)
(33)

where τ is the standard deviation of the distributions Q and Q0, and σ comes from Assumption 3.
To see this, recall that N is the index set of non-basic variables as defined in the proof of Proposition

1. For a fixed (x∗,A, b), if IC(0)c(c) = 1, at least on entry of (9) is violated. Thus, if (9) does not holds
for c0 while I(C(γ))c(c) = 0, there exists at least one index i ∈ N such that

(c0)i − (Ai)
⊤(AB)

−1(c0)B ≥ 0, ci − (Ai)
⊤(AB)

−1cB < −γ, (34)

where Ai is the i-th column of A, and AB is the optimal basis as defined in the proof of Proposition 1.
The corresponding probability of such an event is no less than (by taking difference of the two inequalities
in (34))

P
(
(c0)i − ci − (Ai)

⊤(AB)
−1(c0 − c)B ≥ γ

)
.

Note that c0 follows a normal distribution. The random variable in the left-hand side above is a mean-zero
Gaussian random variable with variance of

τ2(1 +A⊤
i (AB)

−1(A⊤
B)

−1Ai) ≤ τ2(1 +mσ2).

where the inequality comes from Assumption 3.
Thus, (34) holds with probability no more than exp

(
− γ2

2τ2(1+mσ2)

)
, which gives the left part of (33).

The right part follows the same analysis.
Thus, let τ2 = γ2

2(1+mσ2) log T . From (33) and (32), we have, with probability no less than 1 − ϵ, the
following inequalities hold simultaneously for all c0 in the unit ball,

E[ICc(c0)] ≤
1

T

T∑
t=1

I(C(2γ))c(c0) + 2 exp

(
− γ2

2τ2(1 +mσ2)

)
+ 2

√
∥c0∥2

2

2τ2 + log T
ϵ

T

≤ 1

T

T∑
t=1

I(C(2γ))c(c0) +
2

T
+ 2

√
(1 +mσ2) log T

γ2T
+

log(T/ϵ)

T
(35)

≤ 1

T

T∑
t=1

I(C(2γ))c(c0) + 2

√
(1 +mσ2) log T

γ2T
+ 4

√
log(T/ϵ)

T
,

where the first inequality is obtained by plugging (33) into both sides of (32), the second line is obtained
by plugging the value of τ into the inequality, and the last line is obtained by the convexity of the square
root function. Finally, with probability no less than 1− ϵ

sup
{c:∥c∥2≤1}

−Acc(c) +
1

T

T∑
t=1

ICt(γ)(c) = sup
{c:∥c∥2≤1}

E[ICc(c)]− 1

T

T∑
t=1

I(Ct(γ))c(c)

≤ 4

√
(1 +mσ2) log T

γ2T
+ 4

√
log(T/ϵ)

T
,

where the first line comes from the fact that IE(c) = 1− IEc(c) holds for any point c and set E , and the
second line comes from (35) with replacing 2γ by γ.
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C.3 Proof of Theorem 2

Proof. First, let
C̄ :=

{
c ∈ Sn−1 : x̄∗ is an optimal solution of LP(c,A, b)

}
,

where x̄∗ is an optimal solution of LP(c∗,A, b). Similar to the usage of Hoeffding’s inequality in the
proof of Proposition 4, we have the following inequality holds under Assumption 4

P

(∣∣∣∣∣
T∑
t=1

IC̄t(γ)(c
∗)−

T∑
t=1

IC̄t
(c∗)

∣∣∣∣∣ > Lγ +
log T√
T

)
≤ 2 exp

(
−T log T

T

)
=

2

T
, (36)

where the randomness in the above inequalities comes only from (At, bt) (or equivalently Ct).
Then, we combine the above inequality and Proposition 4. Let ĉ be the optimal solution of the

problem OPTδ(γ). We have, for any γ, with probability no more than 1− ϵ− 4
T ,

Acc(ĉ) ≥
T∑
t=1

ICt(γ)(ĉ)− 4

√
(1 +mσ2) log T

γ2T
− 4

√
log(T/ϵ)

T

≥
T∑
t=1

ICt(γ)(c
∗)− 4

√
(1 +mσ2) log T

γ2T
− 4

√
log(T/ϵ)

T

≥
T∑
t=1

IC̄t(γ)(c
∗)− δ − 4

√
(1 +mσ2) log T

γ2T
− 5

√
log(T/ϵ)

T
(37)

≥
T∑
t=1

IC̄t
(c∗)− δ − Lγ − 4

√
(1 +mσ2) log T

γ2T
− 6

√
log(T/ϵ)

T

≥ 1− δ − Lγ − 4

√
(1 +mσ2) log T

γ2T
− 6

√
log(T/ϵ)

T
,

where the first inequality is obtained by Proposition 4, the second line is obtained by the optimality of ĉ,
the third line is obtained by a similar statement as Proposition 3, the fourth line comes from (36), and
the last line is obtained by the fact that IC̄t

(c∗) = 1 for all t. Finally, we plug ϵ = 1
T and γ = 2(1+mσ2)1/4

L1/2T 1/4

into (37). We have, with probability no less than 1− 5
T ,

Acc(ĉ) ≥ 1− δ − 4

√
L(1 +mσ2)1/2 log T

T 1/2
− 9

√
log T

T
≥ 1− δ − (9 + 4L1/2(1 +mσ2)1/4) log T

T 1/4
.

C.4 Proof of Proposition 5

Proof. Denote the realized objective coefficient vector from law (4) as c. Then if the realized utility
vector c = c∗, we have (

max
x≥0:Ax=b

(c∗)⊤x

)
− (c∗)⊤x∗ = 0

where x∗ is the optimal solution of LP(c,A, b).
Otherwise the optimality gap can still be bounded by 2D since∣∣∣∣( max

x≥0:Ax=b
(c∗)⊤x

)
− (c∗)⊤x∗

∣∣∣∣ ≤ ∥c∗∥2 ∥∥∥∥(arg max
x≥0:Ax=b

(c∗)⊤x

)
− x∗

∥∥∥∥
2

(38)

≤ 2D,
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where the first line is obtained by Cauchy’s inequality, and the second line is obtained by the boundedness
of the feasible region {x ≥ 0 : Ax = b}.

Thus, we have

E
[(

max
x≥0:Ax=b

(c∗)⊤x

)
− (c∗)⊤x∗

]
≤ 0 · P(c = c∗) + 2DP(c ̸= c∗)

≤ 2Dδ,

where the first inequality is obtained by dividing the probability space into two events and the bound in
(38), and the second line is obtained by P(c ̸= c∗) ≤ δ

C.5 Proof of Theorem 3

Proof. The idea of the proof is a straightforward application of using Rademacher complexity for gener-
alization bound.

We first introduce the definition of Rademacher complexity. For any function class F that contains
functions mapping the LP’s inputs (c,A, b) to real numbers, the Rademacher complexity of the function
class with t samples is defined by

Rt(F) :=
1

t
E

[
sup
f∈F

t∑
s=1

σsf(cs,As, bs)

]
,

where σs’s are independent random signs distributed uniformly on {−1, 1}, for all s = 1, ..., t. Here, we
define

F =

{
(c,A, b)→

(
max

x≥0:Ax≤b
c⊤x

)
− c⊤x∗ : ∥c∥2 = 1

}
,

where x∗ is the optimal solution of LP(c,A, b). Then, we have

Rt(F) =
1

t
E

[
sup

c:∥c∥2=1

c⊤

(
t∑

s=1

σs

(
argmax

xs≥0:Asxs≤bs

c⊤xs − x∗
s

))]

≤ 1

t
E

[
sup

c:∥c∥2=1

∥c∥2

∥∥∥∥∥
t∑

s=1

σs

(
argmax

xs≥0:Asxs≤bs

c⊤xs − x∗
s

)∥∥∥∥∥
2

]

≤ 1

t
E

∥∥∥∥∥
t∑

s=1

σs

(
argmax

xs≥0:Asxs≤bs

c⊤xs − x∗
s

)∥∥∥∥∥
2

≤ 1

t

√√√√E

∥∥∥∥∥
t∑

s=1

σs

(
argmax

xs≥0:Asxs≤bs

c⊤xs − x∗
s

)∥∥∥∥∥
2

2

=
1

t

√√√√E

(
t∑

s=1

∥∥∥∥ argmax
xs≥0:Asxs≤bs

c⊤xs − x∗
s

∥∥∥∥2
2

)

≤ 2D√
t
,

where the first line comes from the definition of F , the second line comes from Cauchy’s inequality, the
third line comes from ∥c∥2 = 1, the fourth line comes from Jensen’s inequality, the fifth line comes from
the elimination of cross terms since those random signs are independent, and the last line comes from the
boundedness of the feasible region from Assumption 5. Similarly, from the boundedness of the feasible
region, we have that,

0 ≤ f(c,A, b) ≤ 2D, for all f ∈ F .
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Next, by Lemma 8, we have with probability no less than 1− 1
T 2 ,

sup
f∈F

∣∣∣∣∣
t∑

s=1

((
max

xs≥0:Asxs≤bs

c⊤xs

)
− c⊤x∗

s

)
− E

[(
max

x≥0:Ax≤b
c⊤x

)
− c⊤x∗

]∣∣∣∣∣ ≤ 4D√
t
+

2D log T√
t

. (39)

Recall ĉt+1 is an optimal solution of (7) at time t+1. Denote x̂t+1 as any arbitrary optimal solution
of LP(ĉt+1,at+1, bt+1). Then, at each time t = 1, ..., T − 1, we have with probability no less than 1− 1

T 2

E
(
ĉ⊤t+1x̂t+1 − ĉ⊤t+1x

∗
t+1

)
≤

t∑
s=1

((
max

xs≥0:Asxs≤bs

ĉ⊤t+1xs

)
− ĉ⊤t+1x

∗
s

)
+

6D log T√
t

≤
t∑

s=1

((
max

xs≥0:Asxs≤bs

(c∗)⊤xs

)
− (c∗)⊤x∗

s

)
+

6D log T√
t

(40)

≤ E
[(

max
x∈X

(c∗)⊤x

)
− (c∗)⊤x∗

]
+

12D log T√
t

≤ 2Dδ +
12D log T√

t
,

where the first and third line comes from (39), the second line comes from the optimality of ĉt+1, and
the last line comes from Proposition 5. Thus, combining (40) and the boundedness of the feasible set,
we have

E
(
ĉ⊤t+1x̂t+1 − ĉ⊤t+1x

∗
t+1

)
≤ 2Dδ +

12D log T√
t

+
2D

T 2
. (41)

Finally, we take a summation with respect to both sides of (41) and obtain

RegT (π1) ≤
T∑
t=1

E
(
ĉ⊤t x̂t − ĉ⊤t x

∗
t

)
≤ 2Dδ +

12D log T√
T

+
3D

T
.

C.6 Proof of Theorem 4

Proof. Let ft(c) = c⊤(x̂t −x∗
t ) for t = 1, ..., T , which is a sequence of linear functions with respect to c.

By Assumption 5, we have
∥∇ft∥2 = ∥x̂t − x∗

t ∥2 ≤ 2D

for all c with ∥c∥2 ≤ 1. Then,

6D
√
T ≥

n∑
t=1

ĉ⊤t (x̂t − x∗
t )−min

c∈K

n∑
t=1

c⊤(x̂t − x∗
t ) (42)

≥
T∑
t=1

ĉ⊤t (x̂t − x∗
t )−

T∑
t=1

(c∗)⊤(x̂t − x∗
t ),

where the first line comes from Lemma 9, and the second line comes from

min
c∈K

n∑
t=1

c⊤(x̂t − x∗
t ) ≤

n∑
t=1

(c∗)⊤(x̂t − x∗
t ).
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Moreover, by Hoeffding’s inequality, we have with probabiliy no less than 1− 1
T 2 ,

|{t : ct ̸= c∗, t = 1, ..., T}| ≤ δT + 2
√
T log T, (43)

which implies

T∑
t=1

ĉ⊤t (x̂t − x∗
t ) ≤

T∑
t=1

(c∗)⊤(x̂t − x∗
t ) + 6D

√
T

≤
∑

t:ct ̸=c∗

∥c∗∥2∥x̂t − x∗
t ∥2 + 6D

√
T (44)

≤ 2D |{t : ct ̸= c∗, t = 1, ..., T}|+ 6D
√
T

≤ 2DδT + 4D
√
T log T + 6D

√
T ,

with probability no less than 1− 1
T 2 . Here, the first line comes from (42), the second line comes from

(c∗)⊤(x̂t − x∗
t ) ≤ 0, if ct = c∗,

the second line comes from Cauchy inequality, the third line comes from boundedness of c∗, ct,xt,x∗
t ,

and the last line comes from inequality (43).
Finally, taking expectation of (44), we have

1

T
E

[
T∑
t=1

ĉ⊤t (x̂t − x∗
t )

]
≤ 2Dδ +

10D log T√
T

+
2D

T 2
.

D The Case of Single Constraint – Revealed Preference

D.1 Interpretation of Assumption 4

Here we provide an interpretation of the stability parameter L for the single-constraint case, which is
also known as the revealed preference problem. Specifically, for the revealed preference problem, the
decision maker can observe a sequence of actions of a consumer, and the goal is to recover the utility of
the consumer. If the utility function of the customers is expressed by a linear function, then the observed
action is the optimal solution of the following LP:

max
x

c⊤x

s.t. a⊤x = b, 0 ≤ x ≤ 1,

where c = (c1, ..., cn) ∈ Rn denotes the utility vector for n different products, x ∈ Rn denotes the
action, a = (a1, ..., an) ∈ Rn denotes the corresponding prices of those products, and b ∈ R denotes
the consumer’s budget. This LP is also a special case of the standard-form LP (1), and it encodes the
decision-making process of the consumer, where the consumer wants to maximize the utility with the
given constraint, and partial purchase is allowed. The following lemma say that if the price vector is
positive and bounded from above by 1, i.e. a ∈ (0, 1]n, Assumption 4 holds with L = 4n2

min
i:c∗

i
̸=0

|c∗i |
.

Lemma 13. Suppose the distribution of the coefficient pair Pa,b is a continuous distribution on a ∈
(0, 1]n, and its density is upper bounded by p̄ almost surely. Then, with probability no less than 1 −
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4n2

min
i:c∗

i
̸=0

|c∗i |
γ,

IC̄(γ)(c
∗) = IC̄(c

∗), for all b, γ ≤ min
i:c∗i ̸=0

|c∗i |, and fixed c∗ ∈ Sn−1.

Proof. For the proof, we assume that the optimal solution x∗
t satisfies

(x∗
t )i = 0 if (ct)i ≤ 0 for all t = 1, ..., T and i = 1, ..., n.

This assumption is without loss of generality in that if purchasing the i-th item brings no positive utility,
the customer will not purchase the item. Moreover, recall

C̄ :=
{
c ∈ Sn−1 : x̄∗ is an optimal solution of LP(c∗,a, b)

}
,

where x̄∗ is an optimal solution of LP(c∗,a, b). In this special LP, the optimality conditions can be
simplified, and we have c ∈ C̄ if and only if

− min
{i:x∗

i>0}

(
ci
ai

)
≤ 0,

max
{i:x∗

i =0,ci ̸=0}

ci
ai
≤ 0, if a⊤x∗ < b

max
{i:x∗

i =0,ci>0}

ci
ai
− min

{i:xi>0}

ci
ai
≤ 0, if a⊤x∗ = b.

Similarly, we define C̄(γ) be the set of utility vectors c that satisfies the following conditions:

− min
{i:x∗

i>0}

(
ci
ai

)
≤ −γ,

max
{i:x∗

i =0,ci ̸=0}

ci
ai
≤ −γ, if a⊤x∗ < b

max
{i:x∗

i =0,ci>0}

ci
ai
− min

{i:xi>0}

ci
ai
≤ −γ, if a⊤x∗ = b.

Then, by definition of C̄ and the assumption ai ≤ 1 for all i = 1, ..., n, we have c∗ ∈ C̄ and

− min
{i:x̄∗

i>0}

(
c∗i
ai

)
≤ − min

i:c∗i ̸=0
|c∗i |,

max
{i:x̄∗

i =0,u∗
i ̸=0}

(
c∗i
ai

)
≤ − min

i:c∗i ̸=0
|c∗i |,

for any a, b and c∗. Thus, c∗ ∈ C̄(γ) if γ ≤ min
i:c∗i ̸=0

|c∗i | and
∣∣∣ c∗jaj − c∗i

ai

∣∣∣ ≤ γ for all i, j = 1, ..., n. Moreover,

for any i, j = 1, ..., n, ∣∣∣∣ c∗jaj − c∗i
ai

∣∣∣∣ ≤ γ ⇔ c∗i a
∗
j

c∗j
− aiaj

c∗j
γ ≤ ai ≤

c∗i a
∗
j

c∗j
+
aiaj
c∗j

γ,

which happens with probability no more than 4p̄γ
min

i:c∗
i
̸=0

|u∗
i |

. Since there are at most n2 index pairs, with

probability no less than 1− 4n2p̄γ
min

i:u∗
i
̸=0

|u∗
i |

, we have

IC̄(γ)(c
∗) = IC̄(c

∗), for all b, γ ≤ min
i:c∗i ̸=0

|c∗i |, and fixed c∗ ∈ Sn−1.
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D.2 Gaussian setting with Known Concentration Parameter

In this section, we revisit the Gaussian setting for the revealed preference problem and discuss two
methods to learn the mean vector µ ∈ Sn−1 when the concentration parameter κ is known. Specifically,
we consider the following two cases: (i) We can design the constraint pair (at, bt) for all t = 1, ..., T , (ii)
We can only design at ∈ [1,∞)n for all t while we know a lower bound b such that bt ≥ b for all t. The
basic idea is to estimate P(ci > 0|µ) for every i = 1, ..., n and to use the idea of “moment matching” to
identify µ.

Constraint Design for the First Case
For the first case, we set at = (1, ..., 1) ∈ Rn and bt = n for all t = 1, ..., T . Then, at each time t, we

have (x∗
t )i = 1 if and only if (ct)i > 0. We can then estimate P(ci > 0|µ) by the sample average mean

p̂i :=
1

T
·#{t = 1, ..., T : (x∗

t )i = 1}.

Next, we estimate µ based on p̂i.
For any i = 1, .., n, let ϕ be an angle in [0, π] satisfying cosϕ = µi. By Lemma 1 from Romanazzi

(2014), we have

P(ci > 0|µ) =
∫ π/2

0

( κ
2π

)1/2 sin(n−1)/2 ψ · Ĩ(n−3)/2(κ sinϕ sinψ)

sin(n−3)/2 ϕ · Ĩn/2−1(κ)
· exp (κ cosϕ cosψ)ψ, (45)

which depends only on µi. Thus, with slight abuse of notation, we denote P(ci > 0|µi) as the probability
in (45). Moreover, if n = 2, we can have that the above function is strictly increasing. Then, by Lemma
1 from Romanazzi (2014) with the induction method, we can show that the above function is strictly
increasing with respect to µi for every fixed n and κ. For any fixed n and κ, we first numerically compute
(45). Then, a natural estimate of µi is

µ̂i = argmin
µ′
i∈[−1,1]

|P(ci > 0|µ′
i)− p̂i|.

Then, µ̂ = {µ̂1, ..., µ̂n} is our estimation of µ. We can further normalize µ̂ in case that µ̂ ̸∈ Sn−1.
We remark that this method can be hardly generalized to the case that κ is unknown. The reason is

that we do not have a similar strictly increasing structure, and that the bijection between the probability
(45) and the parameter θ might not exist.

Constraint Design for the Second Case
Now we discuss how to design a if we cannot control b. One difficulty that prevents us applying

the same method as in the previous section is that we might have (x∗
t )i = 0 while (ct)i > 0 due to an

insufficient budget. However, if we know a lower bound of {bt}Tt=1, we can still estimate P(ci > 0|µ) by
dismantling the high-dimensional estimation problem into a number of low-dimensional problems.

Denote the lower bound as b. We set the first ⌈b⌉ entries in a be 1 and others be∞, where ⌈·⌉ denotes
the ceiling function. In this case, we have

(x∗
t )i > 0⇔ (ct)i > 0 for all i ≤ ⌈b⌉ and t = 1, ..., T .

In this way, we can estimate P(ui|µ) for i = 1, ..., ⌈b⌉ following the previous case. To estimate the
probability for other i > ⌈b⌉, we can divide the problem into n/b parts and estimate the probabilities
separately.
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